Curriculum for M. Sc Biotechnology MASTER OF SCIENCE

M. Sc SYLLABUS

[For the Candidates admitted under Autonomous, CBCS & OBE pattern]

(ODD SEMESTER)

DEPARTMENT OF BIOTECHNOLOGY

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2015 Certified Institution | Affiliated to Periyar University Approved by AICTE | Re-accredited with "A" Grade by NAAC| Recognized Under 2(f) and 12 (b) of UGC Act, 1956. Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

M.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
PEO: 1	Biotechnology graduate students shall attain professional/industrial expertise by developing competent, creative and ever ready personality to accept recent, innovative and challenging roles in Industry and Academic and Research sectors
PEO: 2	Students shall inculcate in the development of entrepreneurial traits in order to cuddle innovative opportunities by adapting emerging biotechnological concepts in terms of techniques with subsequent development of leadership in the course of start-up of small- medium scale biotech based industry
PEO: 3	Students shall progressively adapt, follow and learn the concepts of biotechnology continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
PEO: 5	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
PO: 1	To train and develop students with the much needed biotechnological education, so that they develop added competitive skill metrics (CSM) for industrial employment higher education and employment upon graduation
PO: 2	To comprehend the assorted knowledge of biotechnical concepts domains and their applicability in the development of value added products for the welfare of the society
PO: 3	To develop a broad range of biotechnological skills and knowledge, development of general and specific competences to meet-out current expectations and requirements of medical, pharmaceutical, bio-molecular and agricultural sectors
PO: 4	To understand and merge the knowledge and concepts of biochemical, biophysical and bio statistical domains
PO: 5	To clarify various challenges in health care by integrating different biological domains including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

GRADE	SPECIFIC OUTCOME
PSO: 1	To provide solutions for the challenges faced by pharmaceutical and molecular diagnostic Sectors
PSO: 2	To provide technical products with high frequency of reproducibility to the society
PSO: 3	To gain vertical mobility in career that will make students more competent to face national/international qualifying exams with practical knowledge acquaintance and in modern biotechnology field
PSO: 4	To solve complex problems in the field of Biotechnology with an understanding of social, ethical, legal and cultural aspects of the society
PSO: 5	To understand the over-all theme/concepts of each specialization in biotechnology and analysing the frequency of its applicability in industry, research and for the goodness of Society

DEPARTMENT OF BIOTECHNOLOGY

M.Sc. DEGREE COURSE IN BIOTECHNOLOGY Choice-Based Credit System REVISED REGULATIONS AND SYLLABUS (w.e.f.2023-2024) (in compliance with TANSCHE)

The recent development in the field of biotechnology as rapid growth and the establishment of biotechnological industries. This has resulted in great demand for trained manpower in this field and has opened new career opportunities for the young generation of students to acquire skills, training and knowledge to enhance their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes. The academic research into innovations for practical use in society and economy, promoting efficient and transparent governance and management of the higher education system, enhancing the capacity of the higher education system to govern itself through coordinated regulatory reform and increasing both public and private sector investment in higher education, with special emphasis on targeted and effective equity-related initiatives.

Learning Outcomes based approach to Curriculum Planning:

The Learning Outcomes based approach to Curriculum planning aims to factor in on the aptitude, interests and strengths of the students during their progress through the coursework and at the same time focus on overall student attainment. The main objective of the learning outcomes based framework is to better equip the students in their pursuit of knowledge, with the required employability skills, innovation in research and entrepreneurship skills. The course is so designed with practical work that will help students to apply their theoretical knowledge in experimenting and exploring. The curriculum envisions that the student, once graduates as specialists in a discipline, have an important role to play in the newer developments and innovations in the future in the subject for the advancement of the discipline.

Graduate Attributes in Biotechnology:

Graduate attributes are the high-level qualities, skills and understandings that a student should gain as a result of the learning and experiences. They equip students and graduates for lifelong personal development, learning and to be successful in society. Students will be equipped to be active citizens both nationally and globally. The students graduating in biotechnology should also develop excellent communication skills both in the written as well as spoken language which are a must for them to pursue higher studies from some of the best and internationally acclaimed universities and research institutions spread across the globe. The graduate attributes reflect both disciplinary knowledge and understanding, generic skills, including global competitiveness all students in different academic fields of study should acquire/attain and demonstrate. Some of the characteristic attributes that a graduate should

demonstrate are as follows

- Leadership Readiness
- Moral and ethical awareness/reasoning.
- Multicultural Competence.
- Life-long Learning.
- Communication Skills.
- Critical thinking.
- Problem-solvingng.
- Research-related skills.
- Scientific reasoning.
- Self-directed learning.
- Disciplinary knowledge.

Qualification Descriptors:

Upon successful completion of the course, the students receive an M.Sc. degree in Biotechnology. Biotechnology postgraduates of this department are expected to branch out into different paths of seeking advanced research-based knowledge, professional employment, or entrepreneurship that they find fulfilling. They will be able to demonstrate knowledge as well as skills in diverse fields of Biotechnology. This will provide a foundation, whichshall help them to embark on research careers by attaining doctoral positions in coveted institutions, as well as securing employment in research projects in industry or institutes. Besides research, they can get suitable teaching positions in Colleges and Universities as Assistant professors after qualifying National Eligibility Test (NET). It is expected that besides the skills specific to the discipline, the wider life skills of analysis, logical reasoning, scientific aptitude, communication skills, research and life ethics, and moral values will be inculcated in the students. The list below provides a synoptic overview of possible career paths provided by postgraduate training in Biotechnology:

- Biotechnology entrepreneurship
- Patents and Law
- Scientific Writing and Editing
- Document preparation and publication
- Research
- Industry
- Teaching
- Administration and Policy Making
- Scientific Communication

Teaching-learning process

The Learning Outcomes-Based Approach to curriculum planning and transaction requires that the teaching- learning processes are oriented towards enabling students to attain the defined learning outcomes relating to the courses within a programme. The outcome-based approach, particularly in the context of undergraduate studies, requires a significant shift from teachercentric to learner-centric pedagogies, and from passive to active/participatory pedagogies. Planning for teaching therein becomes critical. Every programme of study lends itself to a well-structured and sequenced acquisition of knowledge and skills. Practical skills, including an appreciation of the link between theory and experiment, will constitute an important aspect of the teaching- learning process. Teaching methods, guided by such a framework, may include:

- ✓ Classroom Teaching for intensely information-based topics. This is a very regular feature of all thecourses in Biotechnology.
- ✓ PowerPoint slides for topics that involve information and use of PowerPoint presentations are also made whenever the lectures are to be summarized in a crisp and point-wise manner highlight salient/important conclusions from the topics.
- ✓ Classroom Discussions are a regular feature while teaching. The students are drawn into impromptudiscussions by the teacher during the process of teaching.
- ✓ Video Displaying, both real-time and animations, are used for topics that require 3D dimensional viewing of the biological mechanisms to drive the point home. These have proved to be very helpful while teaching concepts of molecular biology like DNA replication, transcription and translation.
- ✓ Model Making is also used especially for understanding and building a perception of the students.
- ✓ Laboratory Practical are an integral part of every course included in the PG programme in Biotechnology. The is also a daily affair for PG students of Biotechnology.
- ✓ **Problem Solving** is encouraged during the laboratory work.
- ✓ **Group Activity** as well as discussions with the laboratory supervisor/ among the students themselves/ Mentor is also encouraged during laboratory work.
- Project Work is included in the programme where students work individually or in groups to design experiments to solve/answer a problem suggested by the Mentor or identified by the students in consultation with the Mentor. The students are mentored regularly during the duration of the project.
- ✓ Presentations by the Students are regularly done. The students are mentored in the presentation ofdata, interpretation of data and articulation with the students/teachers/ResearchScholars during their presentation.
- ✓ Presentations by Experts in different specialties of Biotechnology are arranged to broaden the horizons of the students.
- ✓ Interaction with Experts is also encouraged during/after presentations to satisfy/ignite the curiosities of the students related to developments in the different areas of Biotechnology.
- ✓ Visit to Industries/Laboratories related to Biotechnology like fermentation, food, pharmaceuticals; diagnostics etc. are organized to acquaint the students with real-life

working environments of the professional biotechnologist with a view to broadening their perspective on the subject of Biotechnology.

Assessment methods

The students of PG Biotechnology program must achieve the desired results in terms of the learning outcomes to be professionally sound and competitive in a global society. Achieving the desired learning outcomes is also imperative in terms of job employment leading to a happy and prosperous individual further leading to a happy and prosperous family and thereby a happy and prosperous society or nation. The assessment tasks are pivotal to getting authentic feedback for the teaching- learning process and mid-course corrections and further improvements in the future. The assessment tasks are carried out at various stages of the duration of the PG Biotechnology programme like Mid-term assessments, End-term assessments, Semester examinations, Regular assessments, viva-voce, etc. The assessment tasks are listed below:-

 \checkmark Short-Answer Questions during term and semester examinations are used to assess the ability of the student to convey his thoughts in a coherent way where prioritization of the information interms of their significance is tested.

✓ **Problem Solving questions** are generally given during the laboratory work.

 \checkmark **Surprise Quizzes** are regularly used during continuous assessment while the teaching- learning process is continuing which prepares the student to quickly recall information or quickly analyze a problem and come upwith proper solutions.

 \checkmark **Impromptu Opinions** on biotechnological problems are sought from student during regular teaching- learning which help them to think quickly in a given context. This help build their ability to come up with solutions problems that the students might not have confronted previously.

 \checkmark **Data Interpretation** is also another assessment task that is used to develop the analytical skills of the students. This assessment is used during laboratory work as well as during project work.

✓ Analytical Skills are assessed during work related to several experiments like enzyme kinetics, growth of bacteria and Bacteriophages, and mutation frequencies.

 \checkmark **Paper/ Project presentations** are used to assess the articulation skills of the student. These are carried out both during the duration of the teaching-learning processes as well as during end- Semester examinations.

 \checkmark **Report Writing** is used to assess the keenness of the students for details related to Biotechnology while visiting laboratories/industries as students invariably are required to submit a report after such visits.

✓ Assignment Writing is used to assess the writing abilities of the students during midterm vacations.

 \checkmark Viva-voce during the laboratory working hours and during laboratory, examinations are used to assess the overall knowledge and intelligence of the students.

Key Words:

Biotechnology, Teaching, Learning outcomes, Curriculum, Curriculum Framework, Programme outcomes, Course outcomes, PG Programme, Postgraduate programme,

Teaching-learning processes, Assessment Tasks, Evaluation Tasks, Online Courses, MOOCS, SWAYAM, UGC, India, Higher Education Institutions.

1. CONDITIONS FOR ADMISSION:

A Candidate with a Bachelor's Degree in Science in the disciplines of Biotechnology, Biology, Botany, Zoology, Microbiology, Genetics, Chemistry, Biochemistry, Physics, Agriculture from this University or B.E/ B.TECH (Biotech), B.V.Sc, MBBS, BDS or any area of Biological Sciences / Agriculture and allied sciences; Veterinary and allied sciences or an examination of some other University accepted by the Syndicate as equivalent there to shallbe for the M.Sc Degree Examination of this University after a course of two academic years in an Affiliated Colleges of this University.

2 DURATION OF THE COURSE:

The duration of the course is for two academic years consisting of four semesters.

3. STRUCTURE OF THE COURSE

The course is organized on semester basis with a total off our semesters. In the first, second and third semesters, there arethree (core) theory papers (9 hrs per week), one Core Practical (15hrs per week) and Two elective/ optional papers(4hrs per week), per semester and in the fourth semester, there are only one core theory paper(Research Methodology) (4hrs per week), a core project/ dissertation work constituting a total of 20 hrs per week, two electives (4hrs per week), and a Soft skill program (2hrs perweek).

Elective paper: Each student shall opt for a comprehensive, interactive course with one of the faculty member. The topic of specialization and course content will be determined by the department/ course advisor.

Core Practical Laboratory: Independent practical shall be held under each component. It is recommended that the practical training be organized as an exercise rather than simple demonstration. The students must actually perform the experiments.

4. ELIGIBILITY FOR THE AWARD OF DEGREE:

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed course of study in a college affiliated to the University for a period of not less than two academic years, passed the examination of all the four semesters prescribed earning minimum of 91 credits and fulfilled such conditions as have been prescribed therefore.

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed courses on Soft Skills and internship in addition to the courses prescribed by the respective Board of Studies for the subject of the Masters Degree. For two years Master's Degree Programme, a candidate shall undergo a minimum of 4 courses ($4 \times 2=8$ credits) from the courses on Soft skills.

A two year Master's Degree student shall undergo 4-6 weeks (2 credits internship during the summer vacation of the First year and submit a report in the beginning of third semester. The

report will be evaluated in third semester and the marks forwarded to the University along with third semester internal assessment (CIA) marks.

5. EXAMINATIONS:

There shall be four semester examinations: first semester examination sat the middle of the first academic year and the second semester examination at the end of the first academic year. Similarly, the third and fourth semester examinations shall be heldat the middle and the end of the second academic year, respectively. Practical examination shall be conducted independently at the end of even semesters. For practical examination, a single comprehensive) (covering different courses offered during that semester) practical examination (6hrsperday) beheld for each component of the core practicalat the end of even semesters.

Examinations for the courses on soft skills will be held along with the semester examinations of the core an delective courses. There is no written examination for internship. A student shall submit a report after completing the summer internship. The report will be evaluated by two examiners within the Department of the college/ institution.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

DEPARTMENT OF BIOTECHNOLOGY

M.Sc., Biotechnology Curriculum

(Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2024-2025 onwards)

Course		edits	Hours		Maximum Marks			
Componentt	Course Code Course		Cr	Т	Р	Int	Ext	Total
		SEMESTER - I						
Core -1	23P1BTC01	Biochemistry	4	4	-	25	75	100
Core -2	23P1BTC02	Molecular Genetics	4	4	-	25	75	100
Core -3	23P1BTC03	Molecular Cell Biology	4	4	-	25	75	100
Core Practical-I	24P1BTCP01	Lab in Biochemistry	2	-	3	40	60	100
Core Practical-II	24P1BTCP02	Lab in Molecular Geneticsand Molecular Cell biology	2	-	6	40	60	100
DSE I	23P1BTDE01	Bioinstrumentation	3	3		25	75	100
D9F -1	24P1BTDE02	Tools in Biotechnology			-			
DEE II	23P1BTDE03	Biostatistics	2	3		25	75	100
D9E-11	24P1BTDE04	Enzyme Technology	5		-	23	15	
Soft Skill -I	23P1BTSP01	Lab in Statistics using R Program	2	-	3	40	60	100
Total 24 18 12						245	555	800
Theory05Practical03								
24P1BTCP01 Lab in Biochemistry 3 Hrs								
24P1BTCP02Lab in Molecular Genetics and Molecular Cell biology6 Hrs								
	Core -1 Core -2 Core -3 Core Practical-I Core Practical-II DSE -I DSE -I DSE-II Soft Skill -I y 05 cal 03 FCP01 La	ComponentCourse CodeCore -123P1BTC01Core -223P1BTC02Core -323P1BTC03Core practical-II24P1BTCP01Practical-II24P1BTCP02DSE -I23P1BTDE01DSE -II23P1BTDE03DSE-III23P1BTDE03Soft Skill -I23P1BTDE04Soft Skill -I23P1BTSP01y05Cal03TCP01Lab in Biochemist	ComponentiCourse CodeCourseCore -123P1BTC01BiochemistryCore -123P1BTC02Molecular GeneticsCore -223P1BTC03Molecular Cell BiologyCore -323P1BTC03Molecular Cell BiologyCore -324P1BTCP01Lab in BiochemistryPractical-I24P1BTCP02Ceneticsand Molecular Cell biologyCore Practical-II23P1BTDE01BioinstrumentationDSE -I23P1BTDE02Tools in BiotechnologyDSE -I23P1BTDE03BiostatisticsDSE -II23P1BTDE04Enzyme TechnologySoft Skill -I23P1BTSP01Lab in Statistics using R Programy05 cal03TCP01Lab in Biochemistry	ComponentiCourse CodeCourse 5 SEMESTER - ICore -123P1BTC01Biochemistry4Core -223P1BTC02Molecular Genetics4Core -323P1BTC03Molecular Cell Biology4Core -323P1BTC01Lab in Biochemistry2Core Practical-II24P1BTCP01Lab in Molecular Geneticsand Molecular Cell biology2Core Practical-II24P1BTCP02Eab in Molecular Geneticsand Molecular Cell biology2DSE -I23P1BTDE01Bioinstrumentation Biostatistics324P1BTDE02Tools in Biotechnology3DSE -II23P1BTDE04Enzyme Technology3Soft Skill -I23P1BTSP01Lab in Statistics using R Program2V05 cal03ITCPUILab in Biochemistry24	ComponentCourse CodeCourseTSEMESTER - ISEMESTER - ICore -123P1BTC01Biochemistry44Core -223P1BTC02Molecular Genetics44Core -323P1BTC03Molecular Cell Biology44Core -323P1BTC01Lab in Biochemistry2-Practical-I24P1BTCP01Lab in Molecular Geneticsand Molecular Cell biology2-Core Practical-II24P1BTCP02Lab in Molecular Geneticsand Molecular Cell biology2-DSE -I23P1BTDE01Bioinstrumentation Biostatistics33DSE -II23P1BTDE02Tools in Biotechnology33OSE-II23P1BTDE04Enzyme Technology2-Soft Skill -I23P1BTSP01Lab in Statistics using R Program2-Y05 cal03-2418TCP01Lab in Biochemistry111	ComponentCourse CodeCourseTPSEMESTER - ISEMESTER - ICore -123P1BTC01Biochemistry44-Core -223P1BTC02Molecular Genetics44-Core -323P1BTC03Molecular Cell Biology44-Core -323P1BTC01Lab in Biochemistry2-3Core Practical-I24P1BTCP01Lab in Molecular Geneticsand Molecular Cell biology2-6Core Practical-II24P1BTCP02Geneticsand Molecular Cell biology2-6DSE -I23P1BTDE01Bioinstrumentation Cell biology33-DSE -II23P1BTDE03Biostatistics R Program33-Soft Skill -I23P1BTSP01Lab in Statistics using R Program2-3V05 cal03-241812TCV1Lab in BiochemistryLab in Biochemistry2-3	ComponentCourse CodeCourseItPIntSEMESTER - ICore -123P1BTC01Biochemistry44-25Core -223P1BTC02Molecular Genetics44-25Core -323P1BTC03Molecular Cell Biology44-25Core -323P1BTC01Lab in Biochemistry2-340Core Practical-I24P1BTCP01Lab in Molecular Geneticsand Molecular Cell biology2-640DSE -I23P1BTDE01Bioinstrumentation 24P1BTDE0233-2520SE -I23P1BTDE03Biostatistics R rogram33-25Soft Skill -I23P1BTDE04Enzyme Technology33-25Soft Skill -I23P1BTSP01Lab in Statistics using R Program2-340Total241812245Y05cal03TOTLab in Biochemistry2-340	ComponentCourse CodeCourseTPIntExtSEMESTER - ICore -123P1BTC01Biochemistry44-2575Core -223P1BTC02Molecular Genetics44-2575Core -323P1BTC03Molecular Cell Biology44-2575Core -323P1BTC01Lab in Biochemistry2-34060Core Practical-I24P1BTCP01Lab in Molecular Geneticsand Molecular Cell biology2-64060Core Practical-II24P1BTCP02Construmentation Cell biology33-2575DSE -I23P1BTDE03Biostatistics DSE-II33-2575Soft Skill -I23P1BTDE04Enzyme Technology33-2575Soft Skill -I23P1BTSP01Lab in Statistics using R Program2-34060Total23P1BTDE04Enzyme Technology33-2575Soft Skill -I23P1BTSP01Lab in Statistics using R Program2-34060Total14b in Statistics using R Program2-34060Total23P1BTDE04Enzyme Technology33-2575Soft Skill -I23P1BTSP01Lab in Statistics using R Program2-3

Lab in Statistics using R Program

23P1BTSP01

SCHEME OF EXAMINATION

3 Hrs

Year	Ι	Program	M.Sc., Biotechnology	Code	23P1BTC0
Sem	Ι			Credits	4
Hrs	60	Core – I : BIOCHEMISTRY Effect from			
Course	e Objec	tives:			
The m	ain obj	ectives of thi	s course are:		
reaction physiol	ns and a logical p	its regulation processes of t	Igh knowledge on the basics of all the Bioch. The student will get to understand the core he body in both healthy and disease state.	1	
Course	e Outco	omes:			
On the	succes	sful complet	ion of the course, student will be able to:		
CO1	To un Metab		basics of pH and related principles and	carbohydrate	K1
CO2	To pro	ovide basic kr	nowledge about lipid metabolism and related si	ignificance.	K1,K2 & K3
CO3	To en	ighten the stu	idents on Bio-energetics and Biological oxidat	ion pathways.	K1,K2 & K3
CO4	To up	date the know	ledge on Amino acids and Protein.		K1,K2 & K3
CO5	To assess and appraise the role of Nucleic acids.				
1	K1 - Re	member; K2	2 - Understand; K3 - Apply; K4 - Analyze; k	K5 - Evaluate;	K6 - Create
Unit –	I p	H, Buffers,	Carbohydrates, and Metabolisms		12 Hrs
buffer buffer propert	system, system.	protein buff Water, Carb carbohydrate	rs- Henderson- Haselbach equation, biologica fer system, bicarbonate buffer system, amino pohydrates: Nomenclature, classification, struc s. Metabolisms: glycogenesis, glycogenolysi	acid buffer sy cture, chemical	vstem and Ht and physica
Unit –	II I	.ipids and T	heir Metabolisms		12 Hrs
Metabo	olisms:	biosynthesis	ssification, structure, chemical and physica of fatty acids, triglycerols, phospholipids salt formation. Eicosanoids, sphingolipids and	, glycol lipids	. Cholestero
Unit –	III F	Bioenergetics			12 Hrs
energy Biolog phosph	and end ical ox	quilibrium co idation inclu on, glycolysis	rgy concepts, thermodynamics, and the relation onstants. ATP functions as the universal endes vital pathways such as the electron is and citric acid cycle. It also encompasses thesis, urea cycle.	energy currency transport cha	y in biology iin, oxidative

Unit–]	IV Amino Acids and Proteins	12 Hrs
amino	acids and Protein: Nomenclature, Classification, structure, chemical and p acids and proteins. Metabolisms: Biosynthesis of amino acids. Degra on metabolisms and carbon skeleton of amino acids. Over all in born error n	adation of proteins
Unit –		12 Hrs
pyrimio	c acids: Nomenclature, Classification, structure, chemical and physical pro- dines. In de novo and salvage synthesis of purines, pyrimidine bas- tides. Catabolisms of purines and pyrimidines bases. Synthetic analogues of	es, nucleosides and
Refere	nces	
	Philip Kuchel, Simon Easterbrook-Smith, Vanessa Gysbers, Jacqui M. Schaum's Outline of Biochemistry, Third Edition. McGraw-Hill. U. Satyanarayana, U. Chakrapani. (2011). Biochemistry. Books and All Kolkata.	
	Jeremy M. Berg, John L. Tymoczko, Lubert Stryer. (2010). Biochemistry, H. Freeman. Albert Lehninger, David L. Nelson, Michael M. Cox. (2008). Principles of	
4.	Wiley & Sons, Inc.	i Biochennisti y. John
5.	Donald Voet, Judith G. Voet, Charlotte W. Pratt. (2008). Fundamentals o at the Molecular Level, Third Edition. John Wiley & Sons, Inc.	f Biochemistry: Life
6.	David L. Nelson, Michael M. Cox. (2017). Lehninger Principles of Bie Edition. W. H. Freeman.	ochemistry, Seventh
7.	Lubert Stryer, Jeremy M. Berg, John L. Tymoczko. (2015). Biochemistry H. Freeman.	, Eighth Edition. W
	U. Satyanarayana. (2020). Biochemistry, Sixth Edition. Elsevier.	
9.	Reginald H. Garrett, Charles M. Grisham. (2016). Biochemistry, Sixth Edi Learning.	ition. Cengage
10.	Bruce Alberts, Alexander Johnson, Julian Lewis, et al. (2002). Molecular Fourth Edition. Garland Science.	Biology of the Cell

		1				
Year	Ι	Program	M.Sc., Biotechnology	Code	23P1BTC02	
Sem	Ι	_		Credits	4	
Hrs	60	Core – I: MOLECULAR GENETICS Effect from			2024-2025	
Course Objectives:						
The ma	ain obj	jectives of thi	s course are:			
1. To j	provide	a comprehe	nsive understanding of the fundamental princ	ciples of molec	ular genetics,	
	-		function of genes and chromosomes, mechan	isms of DNAr	eplication and	
- ·	U	netic variation				
			ions of molecular genetics in various fields			
conside			ience, and conservation, emphasizing pract	ical techniques	s and ethical	
Course						
			ion of the course, student will be able to:			
On the		•	,			
CO1			acture and function of genes and chromosome omplexity of the eukaryotic genome.	es, including th	e K1	
CO2		-	DNA replication, gene expression regulation mosomal abnormalities.	ation, mutatio	n K2	
CO3			nprehend the various types of DNA da lar repair mechanisms.	mage and th	e K3	
CO4	To a	nalyze allele	and genotype frequencies, understand the H v chromosome mapping techniques.	Hardy-Weinber	g K4	
CO5	Explo	re the applic	cations of molecular genetics in medicine, on, and forensic analysis, including ethical con		II K5&K6	
K1			Understand; K3 - Apply; K4 - Analyze; K5		6 - Create	
Unit –			to Genes and Chromosomes	,	12 Hrs	
Genes	and c	hromosomes,	Genetic code, Identification of DNA as	the genetic n	naterial. The	
-	•	• •	genome (introns, exons, repetitive DNA sequences of the sequence of the sequen	. 0	-	
Unit -	- II	Exploring DN	NA replication and MutationDynamics		12 Hrs	
		f DNA. Ger	e expression and regulation in prokaryotes	and eukarvot	es. Mutation:	
-			iduced mutation, Radiation and UV induced	•		
Abnorr	nalities	and associat	ted genetic diseases, Techniques in the study	of chromoson	nes and their	
applica	tions, l	Recombinatio	n-models.			
Unit –	III	DNA Damago	e and Repair		12 Hrs	
(Oxida Mechai	tive d nisms	amages, De of DNA dar	r-Internal and external agents causing DNA purinations, Depyrimidinations, single and nage (transition, transversion, frameshift, n ation, excision repair, mismatch repair, post rep	d double stra onsense mutat	and breaks). ions). Repair	

Unit-IV Understanding Genetic Frequencies and Chromosome Mapping

Allele frequencies and genotype frequencies, Random mating population, Hardy Weinberg principle, complications of dominance, special cases of random mating – multiple alleles, different frequencies between sexes (autosomal and X-linked) inbreeding, genetics and evolution, random genetic drift, Karyotyping and usefulness of chromosomes in understanding Genetic variation, Genetics of eukaryotes gene linkage and chromosome mapping.

Unit – V	Applications of Molecular Genetics
----------	------------------------------------

12 Hrs

12 Hrs

Genetic basis of disease: monogenic and complex disorders. Bioremediation: using microorganisms to clean up pollutants. Conservation genetics: preserving biodiversity through genetics. DNA fingerprinting and forensic DNA analysis. Techniques for analyzing genetic evidence: STR analysis and Y-STRs. Legal and ethical issues in forensic genetics.

REFERENCES

- 1. Alberts, B., Johnson, A., Lewis, J., et al. (2015). Molecular Biology of the Cell. 6th edition. Garland Science.
- 2. Strachan, T., & Read, A. (2018). Human Molecular Genetics. 5th edition. Garland Science.
- 3. Lodish, H., Berk, A., Kaiser, C.A., et al. (2016). Molecular Cell Biology. 8th edition. W.H. Freeman.
- 4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., et al. (2015). Introduction to Genetic Analysis. 11th edition. W.H. Freeman.
- 5. Friedberg, E.C., Walker, G.C., & Siede, W. (2006). DNA Repair and Mutagenesis. 2nd edition. ASM Press.
- 6. Jackson, S.P., Bartek, J. (2009). "The DNA-damage response in human biology and disease". Nature, 461(7267), 1071-1078.
- 7. Strachan, T., & Read, A. (2018). Human Molecular Genetics. 5th edition. Garland Science.
- 8. Brown, T.A. (2016). Genomes 4. 4th edition. Garland Science.
- 9. Nussbaum, R.L., McInnes, R.R., & Willard, H.F. (2016). Thompson & Thompson Genetics in Medicine. 8th edition. Elsevier.
- 10. Primrose, S.B., & Twyman, R.M. (2013). Principles of Gene Manipulation and Genomics. 8th edition. Wiley-Blackwell.

NA MARANA MAR

Year	Ι	Program	M.Sc., Biotechnology	Code	23P1BTC03
Sem	Ι			Credits	4
Hrs	75	Core - 3 : N	IOLECULAR CELL BIOLOGY	Effect from	2024-2025
Course	e Objec	tives:			
	-	ectives of this co			
			applied technologies in Life Sciences.		
			eliable, viable and good quality biopro		
		-	stand the core concepts of molecules a	and cell biology	
	-	entrepreneurship.			
		•	bs in industries and academia.		
_		_	er in biopharmaceutical industries.	nto in Diothana	poution
			gram for the development of new conce or and excellent infrastructure and high	-	-
8. One faculty		-	and, excenent infrastructure and figh	iy experienced	and Knowledgeable
Course					
On the	succes	siul completion	of the course, student will be able to):	
		-	the molecular machinery of living c		
					K1,K2 &K3
	-	pation in molecu			
CO-2		-	and purposes of basic components in	prokaryotic	V1 V2 - V2
002	and eu	karyotic cells an	d their molecular mechanism		K1,K2 &K3
			ge and understanding of the principle	es and basic	
CO-3	mecha	nisms ofnuclear	envelope and its functions.		K1,K2 &K3
	Under	stand the metabo	lic pathways and the process of transn	nission of	
CO-4		cellular signals	The pathways and the process of trailsh		K1,K2 &K3
		6	tion of various microscopes and micro	tomy in the	,
CO-5		-	non of various interoscopes and intero	torny in the	K1,K2 &K3
	labora	2			
			nderstand; K3 - Apply; K4 - Analyz	·	
nit – I	-	0	ndations of Cell Biology: From		
			Basic properties of cells- Cellular of		
composition- Cell origin and Evolution (Endosymbiotic theory)– Microscopy- Light Microscopy,					
[nit – I] Exploring the foundations of Cell Biology: From Structure to Function 15Hrs Introduction to cell Biology- Basic properties of cells- Cellular dimension-Size of cells and their composition- Cell origin and Evolution (Endosymbiotic theory)– Microscopy- Light Microscopy, Electron Microscopy, Application of Electron Microscopy in cell biology, Phase Contrast Microscopy, Fluorescence Microscopy, Flow Cytometry and FRET .Organelles of the eukaryotic cell and its functions; Biomembranes - structural organization, transport across membrane (Passive, Active and Bulk transport); Cell-Cell adhesion- Cell junctions (Tight junctions, gap junctions, desmosomes, adherens); Extra cellular matrix (ECM)- components and role of ECM in growth.					
					•
			uctural organization, transport across nesion- Cell junctions (Tight junctions)		
SILIK IT	ansoort	т сеп-сен ялі	JESION- CEN HUNCHONS (LINDE 11110/114	nns oan mnei	THIS DESIDOSOTIES

	M.Sc., Biotechnology Curriculum For the Candidates admitted during the academic year 2024-2025	onwards
Unit – II	Comprehensive insights into Molecular Biology: From Nucleic acids to Protein Synthesis and Cellular trafficking	15Hrs
Structure	of Nucleic acids, Genome organization in Eukaryotes, DNA Replication, Trans	cription,
Translatio	on and post translational Modification. Synthesis, sorting and trafficking of proteins	: site of
synthesis	of organelle and membrane proteins - transport of secretary and membrane proteins ac	ross ER
-	anslational modification in RER – transport to mitochondria, nucleus, chlorop	
-	ne - protein glycosylation – mechanism and regulation of vesicular transport – golgi a	nd post-
golgisorti	ng and processing – receptor mediated endocytosis; Synthesis of membrane lipids.	
Unit–III	Unveiling The Intricacies Of The Nucleus: Structure, Chromatin Organization and Chromosome Dynamics	15Hrs
Nucleus:	Nuclear envelope – Nuclear pore complexes- nuclear matrix – organiz	zation of
chromatir	n – supercoiling, linking number, twist - nucleosome and high order of fo	lding and
organizati	ion of chromosome (Solenoid and Zigzag model) - Global structure of chromoson	me-(Lamp
brush and	polytene chromosomes).	
Unit–IV	Exploring cell dynamics: From Cycle regulation to Signaling pathways	15Hrs
Molecula	r basis of eukaryotic cell cycle, Regulation and cell cycle check points; Programm	ned cell
death (Ag	poptosis); Cell-Cell signaling-signaling molecules, types of signaling, signal trans	duction
pathways	(GPCR- cAMP, IP3, RTK, MAP Kinase, JAK-STAT, Wnt Pathway).	
Unit – V	Decoding Cancer Biology: From Genetic Mechanisms to Therapeutic Innovations	15Hrs
	Biology: Multistage cancer development Mitogens, carcinogens, oncogenes a	nd proto-
oncogene	s, tumor suppressor genes-Rb, p 53, Apoptosis and significance of apoptosis, Genome	Editing -
CRISPR/	Cas 9.	-
Reference	s:	
- ·	, 2009, Cell and Molecular Biology, Sixth edition, John Wiley & Sons, New York.	
2. David E	Sadva., 2009. Cell biology organelles structure and function, CBS publishers and discussion of the structure and function, CBS publishers and discussion of the structure and function.	istributors
New Del	lhi.	
	S. Lohar, 2009. Cell and Molecular Biology.	
	Alberts, Alexander Johnson, Julian Lewis, Martin Raff, 2007., Molecular Biology of	f the Cell
	ition.Garland Science.	
	rlos Uchoa, Janqueira, Jose, Carneiro. 2005. Basic HistologyText and Atlas. McC	3raw- Hil
Professio		
	2001, Text Book of Cell and Molecular Biology 2edition Niyogi Books	
	ng. 2002. Cell interactions: A practical approach Second edition.	
8. Alberts l	B, Molecular Cell Biology. 8. Casimeris et al., Lewin's cells. Jones and Bartlett.	

Department of Biotechnology | VICAS | Autonomous

Year	Ι	Program	M.Sc., Biotechnology	Code		BTCP01	
Sem	Ι	Core Pro	ctical – I : LAB IN BIOCHEMISTRY	Credits	4	2	
Hrs	30		Lucal – 1. LAD IN DIOCHEMISTRY	Effect from	202	4-2025	
Course	e Objec	tives:		· · ·			
The m	ain obje	ectives of this	s course are:				
	evelop kperime	-	kills in using laboratory instruments	and conducti	ng bioc	hemical	
	-		qualitative and quantitative analysis of b	biological molecu	les.		
	cquire t	-		chromatogra		chniques	
6	and p	H measurem	ents.				
Course	e Outco	mes:					
On the	e succes	sful completi	on of the course, student will be able to):			
CO1	Master	y of essential	laboratory instruments and adherence to	safety protocols.		K1	
CO2		•	ring and measuring pH of standard and b	V 1		K3	
02				_		KJ	
CO3	Competence in qualitative and quantitative analysis of sugars, amino acids, proteins, and nucleic acids.				K3		
CO4	O4 Skills in performing and interpreting chromatographic techniques for amino acid separation.					K4	
CO5	Ability	to conduct a	ccurate cholesterol estimation using biocl	hemical methods	•	K2	
K1	- Reme	mber; K2 -	Understand; K3 - Apply; K4 - Analyze	; K5 - Evaluate;	K6 - Cr	eate	
S.No			Experiments			Hours	
1			nmonly used instruments and laborato	ry safety.		3	
1	Exp. N	Io.: 1 - Stoich	iometric Calculations.			3	
	-		easurement of pH of standard buffers.				
2	-		rement of pH using pH meter.			3	
	_	_	ration of Biological Buffers.				
	-	v	s of Monosaccharide in samples.				
3	_		se - Reducing hexose sugar (Glucose).			3	
5	Exp. No.: 5 – Ketose – Reducing hexose sugar (Fructose).						
	_		cing pentose sugar (Aldose – Ribose/Keto	ose – Ribulose)			
	-	•	s of Disaccharides in samples.				
4						3	
	Exp. No.: 8 – Non-Reducing disaccharide (Sucrose).						
		Qualitative analysis of amino acids in samples.					
5	Exp. No.: $9 - \alpha$ -amino acids (aromatic amino acids and sulphur containg amino acids)					3	
	,	itative analv	sis of proteins.				
6	-	•	nation of proteins by Lowry's method			3	

	Quantitative analysis of nucleic acids.					
7	Exp. No.: 11- Estimation of DNA by Diphenylamine method.	3				
	Exp. No.: 12- Estimation of RNA by orcinal method					
0	Quantitative estimation of cholesterol.	2				
8	Exp. No.: 13 – Estimation of Cholesterol by Zak's method	3				
0	Separation of amino acids on Paper Chromatography.	3				
9	 9 Exp. No.: 14 – Separation of amino acids by Paper Chromatography. 					
10	Separation of amino acids on Thin Layer Chromatography	2				
10	Exp. No.: 15 – Separation of amino acids by Thin Layer Chromatography.	3				
Refer	rences					
1.	Principles of Biochemistry" by Albert L. Lehninger, David L. Nelson, and Mich.	ael M. Cox,				
	published by W.H. Freeman, 2017.					
2.	"Biochemistry" by Jeremy M. Berg, John L. Tymoczko, and Gregory J. Gatto Jr., p	oublished by				
	W.H. Freeman, 2015.					
3.	3. "Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry"					
	by Irwin H. Segel, published by John Wiley & Sons, 2004.					
4.	4. "Practical Biochemistry: Principles and Techniques" by Keith Wilson and John Walker,					
	published by Cambridge University Press, 2010.					
~						

5. "Chromatography: Concepts and Contrasts" by James M. Miller, published by John Wiley & Sons, 2013.

//s.//s.//s.//s.//s.//s.//s.//s./

Department of Biotechnology | VICAS | Autonomous

W/W/W/W/W/

Year	Ι	Program	M.Sc., Biotechnology	Code	24P1BTCP02	
Sem	Ι	Core Pract	ical – 3: LAB IN MOLECULAR	Credits	2	
Hrs	45		CS AND MOLECULAR CELL BIOLOGY	Effect from	2024-2025	
Course	e Objec	tives:				
The m	ain obj	ectives of this c	ourse are:			
to calcu	ulate an	d improve their	a basic study skill on the subject and practical skill and knowledge.	d will improve	the student stability	
-			s through experimentation.			
		•	and Proteins using different practical			
4. Inve	stigate	gene expression	and regulation and Study protein inte	eractions and sig	gnaling pathways.	
Course	e Outco	omes:				
On the	succes	sful completior	of the course, student will be able	to:		
CO1	(K2)	Illustrate basic s	separation procedures		K3,K4 &K5	
CO2	(K3)	study the metho	ds of estimation of biomolecules		K3,K4 &K5	
CO3	(K4) isolate & Analyze DNA, RNA & protein K3,					
CO4	(K5)	evaluate the qua	lity and purity of DNA, RNA & Prot	ein	K3,K4 &K5	
CO4	(K5)	critically analyz	e the isolated biomolecules		K3,K4 &K5	
K1 - R	ememb	oer; K2 - Under	stand; K3 - Apply; K4 - Analyze; F	K5 - Evaluate;	K6 - Create	
S.No	Exper	iments – Molec	ular Genetics		Hours	
1	Isolati	on of Genomic l	DNA from Bacteria		7	
2	Isolati	on of Genomic l	DNA from Plants		7	
3	Plasm	id DNA isolatio	n from Bacteria		7	
4	Agaro	se gel electrophe	presis of DNA		7	
5		ction digestion o			7	
	Exper	iments – Molec	cular Cell Biology			
6			r bud sand cockroach or grasshopper		5	
7	Cell co	ounting and cell	viability		5	

DNA manipulation2. Current Protocols in Molecular Biology - A comprehensive collection of protocols covering various

Green - This is a classic reference for techniques in molecular cloning, gene expression analysis, and

an na manana manana manana manana manana manana manana katika katika katika katika katika katika katika katika k

aspects of molecular genetics, including PCR, cloning, sequencing, and mutagenesis.

- 3. Cell and Molecular Biology: Concepts and Experiments by Gerald Karp
- 4. Principles of Gene Manipulation and Genomics by Sandy B. Primrose and Richard M. Twyman.

w/w/w/w/w/*

Department of Biotechnology | VICAS | Autonomous

				1	
Year	Ι	Program	M.Sc., Biotechnology	Code	23P1BTDE01
Sem	Ι		E – I : BIOINSTRUMENTATION	Credits	3
Hrs.	45	D 51		Effect from	2024-2025
Course	e Objec	ctives:			
The ma	ain obj	ectives of thi	s course are:		
			gh knowledge on the basics of all the instrumerstand the core concepts of biological instrumerstand the core concepts o		
Course	e Outco	omes:			
On the	e succes	sful complet	ion of the course, student will be able to:		
CO-1	Introd	uction and va	rious types of microscopic techniques		K1 & K2
CO-2	Impar	t understandi	ng on centrifugation instruments and techniqu	ies	K1, K2, K3
CO-3	Separa	ation of Biom	olecules		K1, K2 & K3
CO-4	Analy	tical methods	on Spectroscopic Analysis		K1, K2 & K3
CO-5	Under	stand the app	lication and Detection on Bioinstrumentation		K1, K2 & K3
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K	5 - Evaluate; l	K6 - Create
Unit –	Ι	Microscopic	Techniques:		09 Hrs
Scanni	ng and	Transmissio	ns: Compound, Light, Stereo, Phase Contr on Electron Microscopy, Scanning Electron coscopy, FRET and Flow Cytometry		
Unit –	II	Centrifugati	on:		09 Hrs
Svedbe Applica	erg unit ation o	, RCF, Dens of Paper Ch	pplications of various types of centrifugation ity Gradient Centrifugation. Chromatograph rromatography, TLC, Gel Filtration Chro Chromatography, GC & HPLC.	hy Techniques	: Principle and
Unit –	III	Electrophor	etic Techniques:		09 Hrs
SDS H (Immu	PAGE, nofixat	Iso- electric ion EP,), ELI	f Agarose Gel Electrophoresis, 2D-gelElectro c Focusing, High resolution Electrophore SA, RIA, Southern, Northern and Western I DNA, Proteins)	sis, Immuno	Electrophoresis
Unit–	IV	Spectroscopi	ic Techniques:		09 Hrs
Spectro	oscopy,	IR Spectroso	of UV and Visible Spectroscopy, Fluore copy NMR, ESR, Atomic Absorption Spectr man Spectroscopy	-	1.
Unit –	V	Radio-isotop	ic Techniques:		09 Hrs
and M	leasurei	nent, Princip	pes, Uses and their Biological Applications, bles and Applications of GM Counter, So RIA, Radiation Dosimetry, Health effects of	olid and Liqui	
			Department of F	Distochaslow ()///	CAS Autonomous

References

- 1. M.H. Fulekar and Bhawana Pandey Bioinstrumentation, Wiley
- 2. Keith Wilson, John Walker, 2010. Principles and Techniques of Biochemistry and MolecularBiology (7th Edition), Cambridge University Press
- 3. David L. Nelson, Michael M. Cox. Menninger (2008). Principles of Biochemistry, Fifth edition W. H. Freeman, New York.
- 4. Experiments in Biochemistry: A Hands-On Approach by Shawn O. Farrell, Ryan T. Ranallo, Paperback: 324 pages, Publisher: Brooks Cole. 20
- 5. Metzler D.E. 2001, the chemical reactions of living cells -Academic Press. 2nd edition.
- 6. Stryer L,1999, Biochemistry-W.H. Freeman & Company, New York. 1. 4th edition
- 7. L.Veerakumari (2006) Bioinstrumentation MJP Publisher Kindle edition
- 8. Jefrey. M., Backer el al., 1996. Biotechnology- A Laboratory Course. Academic Press, NewYork.
- 9. Holcapek, M., Byrdwell, Wm. C. 2017. Handbook of Advanced Chromatography /Mass Spectrometry Techniques, Elsevier

Year	Ι	Program	M.Sc., Biotechnology	Code	24P1BTDE02
Sem	Ι	DCE		Credits	3
Hrs	45	DSE -	I : TOOLS IN BIOTECHNOLOGY	Effect from	2024-2025
Course	e Objec	ctives:			
The m	ain obj	ectives of thi	s course are:		
1.		U	in-depth knowledge of the structure and org	· ·	5
			s, various cloning vectors, and the tools an	nd techniques	used for gene
2	-	ulation.	r selection and screening methods for rec	ombinant DN	A clones and
۷.			a selection and screening methods for rec		
			g relevant biosafety considerations.	upy and Divis	, ingerprinting,
Course					
On the	succes	sful complet	ion of the course, student will be able to:		
CO1		stand the stru	cture of prokaryotic and eukaryotic genomes nal DNA.	and the role	K1
CO2	Learn	about various	cloning vectors and transformation technique	es.	K2
CO3	Maste	r the tools and	l enzymes used in gene manipulation.		K3
CO4	Learn	strategies for	selecting and screening recombinant DNA cl	ones.	K4
CO5	Under	stand the app	lications of cloning and associated biosafety i	ssues.	K5&K6
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	5 - Evaluate; H	K6 - Create
Unit –	I	Gene and Ge	enomes:		09 Hrs
		•	c Genomes - Structure of Gene - DNA as d, mitochondrial DNA and chloroplast DNA.	e	material; Extra
Unit –	II	Cloning Vect	tors:		09 Hrs
		nid, phagemi n, CaCl2 met	d, cosmid, Artificial Chromosomes (BAC) hod.	- Transformat	ion techniques:
Unit –	III	Tools for Ge	ne Manipulation		09 Hrs
•		-	sis: AGE and PAGE; Restriction Enzymes, L etable and scorable - Examples.	igases, Modify	ying Enzymes -
Unit-	IV	Selection Str	ategy and Screening for Transformants		09 Hrs
			Blue-White Selection, Colony Hybridization Blotting and Northern Blotting	on, PCR, Mole	ecular analysis:
Unit –	V	Application	of Cloning		09 Hrs
Over e	xpression	on of Biomole	ecules (Insulin) - Gene therapy – GMO – DN	A Finger print	ing Application
and Bio	osafety	issues			

Department of Biotechnology | VICAS | Autonomous

Reference:

1. Primrose. S.B., Twyman R.M., Old. R.W. (2001) Principles of Gene Manipulation. Blackwell Science Limited. 2. Molecular Biotechnology. S.B Primrose, Blackwell Scientific Publishers, Oxford, 1994.

3. Principles of Gene Manipulation. T.A.Brown

4. DNA Science – A first course in rDNA technology, D.A. Mickloss nd G.A.Freyar, Cold Spring Harbor laboratory Press, New York, 1990.

5. Molecular Cloning. Maniatis, Fritsch and Sambrook.

	1				
Year	Ι	Program	M.Sc., Biotechnology	Code	23P1BTDE03
Sem	Ι		DEE I. DIOCTATICTICS	Credits	3
Hrs	45		DSE - I : BIOSTATISTICS	Effect from	2024-2025
Course	e Objec	tives:			
The m	ain obj	ectives of thi	s course are:		
1.	-		a thorough knowledge on the basics of a	ll the statistic	al concepts, in
	biology				
2.		-	t to understand the core concepts of compu	tation princip	les for the data
	analysi	S.			
Course	e Outco	mes:			
On the	e succes	sful complet	ion of the course, student will be able to:		
CO-1	To unc	lerstand the r	najor Methods of collection & presentation of	f data	K1 & K2
CO-2	To pro	vide basic kr	owledge about methods of analysis of varian	ce	К3
CO-3	To enl	ighten the st	udents about the methods of setting hypothe	esis and	K3 & K4
0-5	calcula	tion of errors	S.		K3 & K4
CO-4	To upo	late the know	ledge on Tests of significance for large and s	mall samples.	K4 & K5
00.5	To ass	ess and appr	aise the role of novel microbes in environm	ent and	
CO-5	integra	te them in sp	ecific innovative approaches.		K5 & K6
K1 - R	ememb	er; K2 - Uno	derstand; K3 - Apply; K4 - Analyze; K5 - H	Evaluate; K6 ·	Create
Unit –		Introduction			9 Hrs
Statisti		cope –collec	tion, classification, tabulation of Statistica	al Data. Mea	sures of central
tenden	cy.				
Unit –			and Regression		9 Hrs
			e – coefficient of correlation– regression – I		ween regression
and con	rrelation	. Probability	distributions – Binomial and Poisson distribu	ition.	
Unit –			Distribution and Basis of Statistical Infere		9 Hrs
			of Statistical Inference – Sampling Distributi	on – Standard	error – Testing
of hype	othesis -	- Null Hypotl	hesis –Type I and Type II errors.		
Unit-	IV	Fests of Sign	ificance for Large and Small samples		9 Hrs
	-		ge and small samples based on Normal t tes		-
goodne	ess of fit	– contingend	cy tables $-c2$ test for independence of two att	tributes, 2×2 ta	able.
Unit –	V	Fests of Sign	ificance		9 Hrs
			nce – one way classification – Two way class	· •	
•			ons – statistical function – Graphics display		
		word proce	esses – databases – statistical analysis pa	ickages graph	ics/presentation
packag	ges.				

References

- 1. Veer bala Rastogi. 2011. Fundamentals of Biostatistics. Ane books Pvt Ltd, Chennai.
- 2. Rosner, B (2005), "Fundamentals of Biostatistics", Duxbury Press.
- 3. Warren, J; Gregory, E; Grant, R (2004), "Statistical Methods in Bioinformatics", 1st edition, Springer
- 4. Milton, J.S. (1992), "Statistical methods in the Biological and Health Sciences", 2nd edition, Mc Graw Hill,
- 5. Sundar Rao P. S.S., Jesudian G. & Richard J. (1987), "An Introduction to
- 6. Biostatistics", 2nd edition,. Prestographik, Vellore, India,.
- 7. Zar, J.H. (1984) "Bio Statistical Methods", Prentice Hall, International Edition.

		1		1	
Year	Ι	Program	M.Sc., Biotechnology	Code	24P1BTDE04
Sem	Ι	DGE	2 – II : ENZYME TECHNOLOGY	Credits	3
Hrs	45	DSE	- II : ENZIME IECHNOLOGI	Effect from	2024-2025
Course	e Objec	tives:			
			s course are:		
	v		wledge on the fundamentals of enzyme str		
		-	led with a basic knowledge and understandin	g about the fu	nctions of
			trial application of enzymes.		
	e Outco				
On the	succes	sful complet	ion of the course, student will be able to:		
CO-1	Explai	n the basics of	f enzyme nomenclature and properties.		K3 & K5
CO-2	Classif	y and Cogniz	the native and immobilized enzyme.		K3 & K5
CO-3	Exami	ne the equation	ons of steady state kinetics.		K3 & K4
CO-4	Assess	extraction a	nd downstream processing of enzymes.		K3, K4 & K6
CO-5	Compi	le the uses of	enzymes and design enzymes for Industrial	and	K3,K4, K5 &
0-5	Clinica	al application			K6
K1	- Reme	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K	5 - Evaluate;	K6 - Create
		oduction to 1			09 Hrs
			e and general properties like effects of pH,		-
-	-		s. Extraction Isolation and purification on phy and electrophoresis and liquid-liquid ext	=	
Unit–I	I Kin	etics of Cata	lysed Reaction		09 Hrs
Single			bisubstrate reactions, concept of Michaeli	s - Menten,	Briggs Haldane
relatior	nship, D	Determination	and significance of kinetic constants, Lim	itations of M	ichaelis-Menten
		weaver burk	plot, Hanes wolf equation, Eadie hoofstee e	quation ,Inhib	ition of enzyme
activity	/.				
Unit–I		zyme Catalys			09 Hrs
•	-	•	concept of active site, determination of act		•
-			of enzymes. Mechanism of catalysis: Proxi	•	
U		•	, concerted acid - base catalysis, nucleoph l ion catalysis.	ilic and electi	ophilic attacks,
			-		
			chanism of Catalysis		09 Hrs
			tion: mechanism of action of lysozyme, chy ultienzymes system, Mechanism of action		
	-	•	d synthetase complex.	and regulat	on or pyruvale
Unit–V	Enz	yme Regulat	ion and Industrial Applications		09 Hrs
		. 0	**		

Department of Biotechnology | VICAS | Autonomous

Coenzyme General mechanisms of enzyme regulation, Allosteric enzymes, sigmoidal kinetics and their physiological significance, Symmetric and sequential modes for action of allosteric enzymes. Reversible and irreversible covalent modification of enzymes, Immobilized enzymes and their industrial applications. Clinical and industrial applications of enzymes, Enzyme Engineering – Directed evolution.

References

- 1. Nicholas C.Price and Lewis Stevens., 2010. Fundamentals of Enzymology. Oxford UniversityPress,
- 2. New Delhi
- 3. Lehninger, Nelson and Cox, 2005, Principles of Biochemistry 4th edition, WH Freeman and
- 4. Company, New York, USA
- 5. Principles of Biochemistry with human focus Garrett and Grisham, 2002, Harcourt College
- 6. Publishers, Orlando, Florida, USA.
- 7. Geoffrey L, Zubay, Biochemistry -, 1998, 4th edition. 23
- 8. Donald Voet, Judith Voet and Pratt, 1995, Fundamentals of Biochemistry, 2nd edition.
- 9. Harper.s Biochemistry Murray et al, 2000, 25th edition, Appleton and Lange Publishers.
- 10. Enzymes Trevor Palmer 2002.

X 7	Ŧ	D					
Year	I	Program	M.Sc., Biotechnology	Code	23P1BTSP01		
Sem	Ι	Soft Skill	- I : LAB IN STATISTICS USING R	Credits	2		
Hrs	60	60 PROGRAM Effect from					
Course	e Objec	ctives:					
	U		s course are:				
	R, ens manipu	uring they ca ilation tasks.	to proficiently import data from various f an manage diverse data sources effective	ly for subsequ	ent analysis and		
2.	restruc	turing data	master data reshaping and manipulation frames, merging datasets, and aggregating and transforming data for analytical pro-	gating inform	-		
Course	e Outco	omes:					
On the		-	ion of the course, student will be able to:				
CO1			to R programming fundamentals, including for basic script writing and data handling.	ng data types a	and K1		
CO2	Enable proficiency in data manipulation and reshaping tasks, focusing on importing, exporting, and transforming data using R, crucial for data preparation in analysis and visualization.						
CO3	Develop skills in creating and customizing various types of plots and graphs in R to effectively visualize and interpret data for analytical insights and communication.						
CO4	Provide a solid foundation in basic statistical concepts and methods in R, essential for summarizing data, assessing distributions, and performing initial data analyses.						
CO5		s, analyzing	advanced statistical techniques and tests in relationships, and conducting comprehens	-	-		
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; I	K5 - Evaluate;	K6 - Create		
S.No			Experiments		Hours		
1			dio & Load R Studio and understand the int	erface.	6		
2			metic operations.		6		
3	Create lists.	and manipul	ate manipulate vectors, matrices, factors, da	ata frames, and	6		
4	Impor	t & Export da	ta from CSV, TXT, and Excel files into R.		6		
5	Perfor	m data manip	ulation tasks (subsetting, merging, aggrega	ting).	6		
6	Genera	ate various pl	ots: histogram, scatter plot, box plot, bar pl	ot.	6		
7	Create	e density plots	s, violin plots, lollipop charts, and heat map	S.	6		

Department of Biotechnology | VICAS | Autonomous

8	Calculate mean, median, mode, range, variance, and standard deviation.	6
9	Perform normality tests (Shapiro-Wilk, Kolmogorov-Smirnov).	6
10	Perform t-tests (independent, paired), ANOVA, and non-parametric tests (Wilcoxon rank-sum, Kruskal-Wallis).	6

References

- 1. "R for Data Science" by Hadley Wickham and Garrett Grolemund (2017, 1st edition)
- 2. "An Introduction to Statistical Learning: with Applications in R" by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013, 1st edition)
- 3. "Discovering Statistics Using R" by Andy Field, Jeremy Miles, and Zoe Field (2012, 1st edition)
- 4. "R Graphics Cookbook" by Winston Chang (2013, 1st edition)
- 5. "Advanced R" by Hadley Wickham (2014, 1st edition)
- 6. "Applied Predictive Modeling" by Max Kuhn and Kjell Johnson (2013, 1st edition)
- 7. "Data Manipulation with R" by Phil Spector (2008, 1st edition)
- 8. "Modern Data Science with R" by Benjamin S. Baumer, Daniel T. Kaplan, and Nicholas J. Horton (2017, 1st edition)
- 9. "ggplot2: Elegant Graphics for Data Analysis" by Hadley Wickham (2009, 1st edition)
- 10. "Introductory Statistics with R" by Peter Dalgaard (2008, 1st edition)

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

DEPARTMENT OF BIOTECHNOLOGY

M.Sc., Biotechnology Curriculum

(Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2023-2024 onwards)

	Course	Course Code	Course	Credits	Н	ours	s Maximum Mark		Marks
S.No	Component	Course Code	Course	Cre	Т	Р	Int	Ext	Total
			SEMESTER - III						
1	Core -7	23P3BTC07	Immunology	4	4		25	75	100
2	Core -8	23P3BTC08	Bioprocess Technology	4	4		25	75	100
3	Core -9	23P3BTC09	Bioinformatics	4	4		25	75	100
4	Core Practical -III	23P3BTCP03	Lab in Immunology and Bioprocess Technology	3		6	40	60	100
5	Core Practical -IV	23P3BTCP04	Lab in Bioinformatics	2		3	40	60	100
6	DSE - I	23P3BTDE07	Molecular DevelopmentalBiology	3	3		25	75	100
0	DSE - I	23P3BTDE08	Nano Biotechnology				25	75	
7	Soft Skill -III	23P3BTSP03	Lab in Omics Data aalysis	2		3	40	60	100
8	Val.Edu	23P3HR01	Human Rights	1	1		25	75	100
9	Internship	23P3BTINT01	Internship	1					
		Total		24	16	12	245	555	800
Theor Practi	cal 03								
Intern		J							

SCHEME OF EXAMINATION

23P3BTCP03	Lab in Immunology and Bioprocess Technology	6 Hrs
23P3BTCP04	Lab in Bioinformatics	3 Hrs
23P3BTSP03	Lab in Omics Data analysis	3 Hrs

Year	II	Program	M.Sc., Biotechnology	Code Credits	23P3BTC07
Sem	III	-	4		
Hrs	60		Core – 7: IMMUNOLOGY	Effect from	2023-2024
Course	Objec	tives:			
	· ·		s course are:		
			ough knowledge on the basics of immunology		• •
		-	understand the core concepts of immune syste	ems and their r	ion-specific and
		chanisms, va			
Course On the			ion of the course, student will be able to:		
		-	echanisms that regulate immune responses a	und maintain	
CO-1	tolerar		containisms that regulate minimule responses a		K1 & K2
CO-2		•	s and cellular players in antigen presentation, n will shape resulting effectors responses.	and how the	K2,K3 & K5
CO-3		the concepts	s of cellular and molecular processes that retem.	presents the	K2 & K5
CO-4		ate the role o ular level.	f immunological regulation and tolerance at a	cellular and	K4 & K5
CO-5	Comp	ile concepts o	n immunological principles and diagnosis.		K3,K4 & K6
K1	- Reme	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	- Evaluate; K	6 - Create
Unit –			s of Immunology		12 Hrs
			he immune system. Types of immunity - in		
			crimination. Physiology of immune response:		
		-	s of the immune system .Lymphoid tissue tiation of lymphocytes.	e, origin and	development.
Unit –	II I	mmune Cells	s and Its function or Cellular Immunology		12 Hrs
Lymph	ocyte-s	ub-population	ns of mouse and man. APCcells, lymp	bokines, Pha	gocytic cells,
macrop	hage, c	lendritic cell	s, K and NK Cells. Nature and biology of	antigens, epite	opes, haptens,
		-	ns- structure, distribution and function. Im	-	super family
Isotypic	e, Allot	ypic and Idio	typic variants, generation of antibody diversity	у.	
Unit –	III C	linical Imm	unology		12 Hrs
			uction and its applications. Types of vaccin		
		-	immune responses, Structure and function of		
		-	in transplantation and HLA tissue typing. T	-	
	-	-	raft rejection, cinical transplantation and I nour antigen, Immune response to tumours.	mmunosuppre	ssive therapy.
Unit– l	VI	mmunologic	al Effector Mechanisms		12 Hrs
	· •			I	

Effector mechanisms in immunity - macrophage activation, cell mediated cytotoxicity, cytotoxicity assay. Hypersensitivity reactions and types. The complement system, mode of activation, classical and alternate pathway, biological functions of C proteins.

Unit – VImmunological Techniques and Applications12 HrsImmuno techniques- Principle and Applications: Immuno diffusion, Immuno fluorescence, Insitulocalization technique - FISH and GISH. RIA and ELISA, FACS, Western blot, ELISPOT assay.Agglutination tests. VDRL test. Purification of antibodies, Quantitation of immunoglobulin by RID,EID and nephelometry, CMI techniques and Immunotherapy.

References

- 1. Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, 2011.
- 2. Roitt.s Essential Immunology, 12 edition, Wiley-Blackwell. USA.
- 3. Kannan. I., 2010. Immunology. MJP Publishers, Chennai.
- 4. Abbas, A.K., A.H.L. Lichtman and S.Pillai, 2010. Cellular and MolecularImmunology. 6thEdition.
- 5. Saunders Elsevier Publications, Philadelphia.
- 6. SeemiGarhat Bashir, 2009. Text Book of Immunology, PHI LearningPvt. Ltd. New Delhi.
- 7. Thomas J. Kindt, Barbara A. Osborne and Richard A. Goldsby, 2006.Kuby Immunology, 6thedition,
- 8. W. H. Freeman & Company. Nandini Shetty, 1996, Immunology: introductory textbook I. NewAge International, NewDelhi.

Year	II	Program	M.Sc., Biotechnology	Code	23P3BTC08
Sem	III			Credits	4
Hrs	60	Core -	- 8 : BIOPROCESS TECHNOLOGY	Effect from	2023-2024
Course	e Objec	tives:			
The ma	ain obj	ectives of this	s course are:		
			on understanding basic principles of fermentati	-	
		-	value added products such as antibiotic, vitam	-	
		ents also gair	added knowledge on the production of agro	-based produ	cts for human
	elfare.	da studants w	ith a comprehensive understanding of the princ	vinlos and pro	ationsinvolved
	-	cess Technol		ipies and pra	clicesiiivoived
	-		olication of bioprocess technology in va	rious indust	ries such as
	-	euticals, food			Sevin u b
-			vancements and emerging trends in bioprocess	technology.	
Course	Outco	omes:	-		
On the	succes	sful complet	ion of the course, student will be able to:		
CO1	Under	stand the bas	sics of fermentation processes and their imp	portance in	K1 & K2
CO1	variou	s industries.			$\mathbf{K} \mathbf{I} \propto \mathbf{K} \mathbf{Z}$
CO 2	Classi	fy different	types of bioreactors, including submerged	d, surface,	
CO2	mecha	nically agitate	ed, and non-mechanically agitated reactors.		K2 & K3
GO 1	Introd	uce bioprodu	acts and bio separation techniques used in c	lownstream	
CO3	proces	ssing.			K4
	Discus	ss chromatogi	aphy techniques and membrane separation me	ethods used	
CO4	in dov	vnstream proc	essing.		K4 & K5
	Differ	entiate betwee	en aerobic and anaerobic fermentation processe	es and their	
CO5	applic	ations in biote	echnology industries.		K4 & K5
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5 -	Evaluate; K	6 - Create
Unit –	Ι	Introduction	to fermentation		12 Hrs
Genera	l requi	ements of fer	rmentation. Microbial growth kinetics of batch	n, fed batch a	nd continuous
culture.	Solid	substrate, slu	urry fermentation and its application. Microbi	ial cell cultur	e preparation.
			d enzymes. Food Safety- Introduction to foo	od safety aspo	ects and food
related	hazard	s – HACCP, E	EU, PEM/NPEM and ISO/IEC standards.		
Unit –		Types of Bio			12 Hrs
	-		ce reactors, mechanically agitated reactors,		
		-	ters, body construction. Production of citric a	-	
		-	of Industrially important Micro-organisms, I	Media for Inc	lustrial
		nd Sterilizatio			14.11
Unit –	111	Introduction	to bioproducts and bio separation		12 Hrs

Primary recovery process- Cell disruption methods. Cell lysis and Flocculation: Osmotic and mechanical methods of lysis. Flocculation by electrolysis; polymorphic flocculation. Precipitation methods. Filtration- Principles, Conventional, Crossflow filtration. Sedimentation- Principles, Sedimentation coefficients. Extraction Principles, Liquid extraction, aqueous two-phase extraction, supercritical fluid extraction.

Unit– IV **Down Stream Processing**

12 Hrs

Chromatography Techniques, Membrane separation, ultrafiltration. Drying. Principles and operation of vacuum dryer, shelf/tray dryer, rotary dryer, freezer and spray dryer. Crystallization and Whole broth processing.

Unit – V **Application of Bioprocess Technology**

Aerobic and anaerobic fermentation processes and their application in the field of biotechnology industry. Production of commercially important primary and secondary metabolites, Effluent Treatment and Fermentation Economics.

References

- 1. "Bioprocess Engineering: Basic Concepts" by Michael L. Shuler and Fikret Kargi
- 2. "Principles of Fermentation Technology" by Peter F. Stanbury, Allan Whitaker, and Stephen J. Hall
- 3. "Bioseparations Science and Engineering" by Roger G. Harrison, Paul W. Todd, Scott R. Rudge, and Demetri P. Petrides
- 4. "Bioseparations: Principles and Techniques" by B.S. Narayan
- 5. "Bioprocess Engineering Principles" by Pauline M. Doran
- 6. Covers the principles of bioprocess optimization and scale-up strategies.
- 7. "Biochemical Engineering Fundamentals" by James E. Bailey and David F. Ollis
- 8. "Biotechnology: A Textbook of Industrial Microbiology" by Wulf Crueger and Anneliese Crueger
- 9. Focuses on the application of microbial biotechnology in industrial processes.
- 10. "Industrial Microbiology: An Introduction" by Michael J. Waites, Neil L. Morgan, John S. Rockey, and Gary Higton
- 11. Provides insights into advanced bioprocessing techniques and industrial applications.
- 12. Additional Reference Books:

Department of Biotechnology | VICAS | Autonomous

Year	II	Program	M.Sc., Biotechnology	Code	23P3BTC09
Sem	III	Ingrum	Million, Diotectimology	Credits	4
	60	-	Core – 9: BIOINFORMATICS	Effect from	2022 2024
Hrs Course					2023-2024
		ectives of thi	s course are:		
			in the concept of essential of bioinformatics.		
2. To u	ndersta	nd the usage	of prediction tools that are used to predict the	biological syste	em.
3. To u	ndersta	nd basic conc	epts of drug designing.		
Course	Outco	mes:			
On the	succes	sful complet	ion of the course, student will be able to:		
CO1	includ	ing nucleic a	ucture and organization of various biologic cid sequence databases (GenBank/NCBI, EN e databases (UniprotKB, PIR).		K1
CO2 Develop skills in sequence alignment, including both pairwise sequence alignment (local and global alignments) and multiple sequence alignment using tools like Clustal X.					K2 & K3
CO3 Learn to use gene prediction methods (ORF Finder, Genscan), restriction site analysis, PRIMER designing, and RNA/protein secondary structure prediction methods (Chou-Fasman, GOR).					K3
CO4 Understand the principles of molecular mechanics, including force fields, bond length, torsion angle, non-bonded interactions (electrostatic and van der Waals interactions), and energy minimization (local and global).					K4 & K5
CO5	desigr	-	and techniques of drug designing, including ided drug design, ligand-based approaches	U	K5&K6
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	5 - Evaluate; K	6 - Create
Unit –		Biological Da			10 Hrs
Biologi sequence Databas	cal Da ce data ses- PU	tabases, Nucle bases – Unipr JBMED, OMI	eic acid sequence databases– GenBank/NCB otKB and PIR, Structure databases – PDB, C M and KEGG. gene expression data, protein logy (GO) data.	CATH and SCO	DDBJ. Protein P. Specialized
Unit –	ΙΙ	Sequences A	nalysis		15 Hrs
-	-		wise Sequence Alignment- Local alignme		0
Dynam	-	0	algorithm, Scoring matrices, gap per	-	-
			genetic Analysis- Tree construction method tethods, UPGMA and WPGMA, Database Sin		
Unit –	ш	Prediction a	nd Analysis Tools		10 Hrs

Genome sequencing - EST Clustering and analyses, Finding genes in prokaryotic and eukaryotic genomes, Regulatory sequence analysis, Genome maps and markers, understanding Genome variation, Gene Prediction methods – ORF Finder, Genscan, Restriction Site Analysis, PRIMER Designing, RNA Secondary Structure Predictions, Protein Secondary Structure Methods- Chau-Fasman and GOR.

Unit– IV Molecular Modeling

12 Hrs

Molecular Mechanics – force fields; Bond length, Torsion angle, Non- bonded interactions electrostatic and van der Waals interactions, energy minimization- local and global, Homology Modeling, Molecular dynamics and simulation.

Unit – V Drug Designing

13 Hrs

Drug Discovery. History. Steps in drug discovery. Target Identification. Target Validation. QSAR. Lead Identification. Preclinical pharmacology and toxicology. ADME. Drug designing. Rational drug design. Computer aided drug design. Ligand based approach. Target based approach.

References

- 1. "Bioinformatics: Sequence and Genome Analysis" by David W. Mount, 2nd Edition (2004)
- 2. "Bioinformatics: Principles and Applications" by Zhumur Ghosh and Bibekanand Mallick, 1st Edition (2008).
- 3. "Bioinformatics: Sequence and Genome Analysis" by David W. Mount, 2nd Edition (2004).
- 4. "Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins" by Andreas D. Baxevanis and B. F. Francis Ouellette, 3rd Edition (2004).
- 5. "Molecular Modelling: Principles and Applications" by Andrew R. Leach, 2nd Edition (2001).
- 6. "Drug Design: Methodology, Concepts, and Mode-of-Action" by Thierry Langer and Rolf W. Hartmann, 1st Edition (2006).
- 7. "The Organic Chemistry of Drug Design and Drug Action" by Richard B. Silverman and Mark W. Holladay, 3rd Edition (2014).

Veen	тт	Ducquom	M So. Distochnology	Codo	22D2D TCD02				
Year Sem	II III	Program	M.Sc., Biotechnology Core Practical – III:	Code Credits	23P3BTCP03 3				
Hrs	40	LAB IN	IMMUNOLOGY AND BIOPROCESS	Effect from	2023-2024				
		4	TECHNOLOGY	2023-2024					
	<u>e Objec</u> ain obi		s course are:						
			ith practical exposure to immunological tec	chniques, inclue	ding the handling				
	of laboratory animals and the qualitative and quantitative estimation of antigen- antibody								
-	pecificit	•							
		-	ovide hands-on experience and theoretical last s and their applications.	knowledge on v	various microbial				
		1	the techniques for fermenter operation,	microbial cell	immobilization,				
			milk, and the production and estimation of						
	,	acetic acid.							
			ses on the isolation and application of ber		-				
aı	nd bever	rage termenta	ation, enhancing the understanding of micro	bial biotechnol	logy.				
Course	e Outco	mes:							
On the	succes	sful complet	ion of the course, student will be able to:						
CO1	-		ts with practical exposure to immunolo	0 1	ies, K3				
		00 0	nowledge on handling of laboratory animal						
CO2		ain comprehenter compone	ensive knowledge of the design and fun	nction of varie	ous K3 & K4				
		1		a andirum alain					
CO3	no lea		ique of immobilizing yeast cells using the	e sodium algin	K4 & K5				
			erpret the Methylene Blue Reduction Test	(MBRT) to ass	ess				
CO4	milk q			(1112111) to uss	K5 & K6				
	To un	derstand the	entire process of wine fermentation, lea	arn the microb	vial				
CO5	produc	ction process	of citric acid and understand the microbial	process for ace	etic K5 & K6				
	acid pr	oduction.							
K1 -	- Reme	mber; K2 –	Understand; K3 – Apply; K4 – Analyze;	K5 – Evaluate	; K6 – Create				
			Immunology						
S.No			Experiments		Hours				
1	Differe	ential Leukoc	eyte Count		3				
2	Total I	Leukocyte Co	punt		3				
3	C - Re	eactive Protei	n Test		3				
4	Rapid	Plasma Reag	in Test		3				
5	Rocke	t Immuno Ele	ectrophoresis		5				
				f Diotophy alogy ()	I				

6	Counter Current Immunoelectrophoresis	3
	Bioprocess Technology	
7	Isolation of Lactobacillus from Dairy Products	5
8	Yogurt Fermentation with Lactobacillus Culture	3
9	Production of Ethanol by Yeast	3
10	Production of Vitamin B ₁₂	3
11	Production of Antibiotics (Penicillin)	3
12	Production of Beer	3

References

- 1. Clinical Laboratory Tests: Values and Implications by Springhouse (Published in 2001)
- 2. Textbook of Medical Laboratory Technology by Praful B. Godkar (Published in 2014)
- 3. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results by Thomas L. Lehmann and Georg D. Hirsch (Published in 2012)
- 4. Clinical Laboratory Science Review by Robert R. Harr (Published in 2015)
- Clinical Laboratory Hematology by Shirlyn B. McKenzie, Lynne Williams, and Turgeon ML (Published in 2014)
- 6. Clinical Laboratory Tests: Values and Implications by Springhouse (Published in 2001)
- 7. Textbook of Medical Laboratory Technology by Praful B. Godkar (Published in 2014)
- 8. Clinical Laboratory Diagnostics: Use and Assessment of Clinical Laboratory Results by Thomas L. Lehmann and Georg D. Hirsch (Published in 2012)
- 9. Clinical Laboratory Science Review by Robert R. Harr (Published in 2015)
- 10. Clinical Laboratory Hematology by Shirlyn B. McKenzie, Lynne Williams, and Turgeon ML (Published in 2014)

Year	II	Program	M.Sc., Biotechnology	Code	23P3BTCP04	
Sem	III	~ -		Credits	2	
		Core Pract	ical – IV : LAB IN BIOINFORMATICS	Effect from		
Hrs	30			Effect from	2023-2024	
Course Objectives:						

The main objectives of this course are:

1. Equip students with comprehensive bioinformatics skills for analyzing and interpreting biological data, including sequence similarity searching, multiple sequence alignment, phylogenetic analysis, and structural modeling using various databases and tools such as ExPASy, NCBI, BLAST, and Modeller.

2. Develop students' proficiency in utilizing specialized software and servers for advanced bioinformatics applications, including predicting physicochemical properties, secondary structures, drug-like properties, performing site-directed mutagenesis, and conducting docking analyses with tools like ProtParam, NPSA, Molinspiration, Swiss-PdbViewer, AutoDock Vina, and Protein Plus.

Cours	e Outcomes:		
-	e successful completion of the course, student will be able to:		
CO1	Understand and navigate ExPASy and NCBI databases for retrieving and analyzing biological data and principles of sequence alignment and similarity searching.	K1	
CO2	Conduct multiple sequence alignments and phylogenetic analysis to infer evolutionary relationships among sequences. Gain proficiency in performing both local and global pairwise alignments, understanding their applications.	K2	
CO3	Predict and analyze the physicochemical properties of protein sequences using ProtParam and protein secondary structures and interpret the results using the NPSA server.	K3	
CO4	Gain expertise in performing comparative modeling of protein structures using Modeller and validating these models with the SAVES server and assessing drug-like properties of molecules using Molinspiration.		
CO5	Master the techniques of docking analysis using AutoDock Vina and the Protein Plus server to predict and evaluate protein-ligand interactions.	K5	
K1	- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	; K6 - Create	
S.No	Experiments	Hours	
1	Biological database with reference on ExPASy and NCBI.	3	
2	Sequence similarity searching using BLAST, Multiple sequence and phylogenetic analysis.	3	
3	Pairwise alignment – Local & Global Alignment.	3	
4	Predicting Physiochemical properties of protein sequence using Protparam.	3	
		•	

5	Predicting protein secondary structure using NPSA server.	3
6	Comparative Modeling using Modeller and Validation using SAVES server	3
7	Determine Drug like properties using Molinspiration.	3
8	Drawing chemical compounds and predicting properties using Chemsketch.	3
9	Performing site directed mutagenesis using Swiss-PdbViewer.	3
10	Docking analysis using Autodock Vina and protein plus server.	3
Rofor		

References

- 1. "Bioinformatics: Sequence and Genome Analysis" by David W. Mount, 2004.
- 2. "Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins" by Andreas D. Baxevanis and B. F. Francis Ouellette, 2005.
- 3. "Introduction to Protein Structure" by Carl-Ivar Brändén and John Tooze, 1999.
- 4. "Structural Bioinformatics" edited by Philip E. Bourne and Helge Weissig, 2003.
- 5. "Molecular Modelling: Principles and Applications" by Andrew R. Leach, 2001.
- 6. "Computational Drug Design: A Guide for Computational and Medicinal Chemists" by David C. Young, 2009.
- 7. "Essential Bioinformatics" by Jin Xiong, 2006.
- 8. "Protein Structure Prediction: A Practical Approach" edited by Michael J. E. Sternberg, 1997.

		T		1	I			
Year	II	Program	M.Sc., Biotechnology	Code	23P3BTDE07			
Sem	III	DSE – I	: MOLECULAR DEVELOPMENTAL	Credits	3			
Hrs	45	252 1	BIOLOGY	Effect from	2023-2024			
Course	Course Objectives:							
	v		s course are:					
-			basis of developmental processes such a	s cell differe	ntiation, tissue			
-	•	and organ for	e expression and regulation control de	valonmental	nathways and			
	phogen	-	expression and regulation control de	velopmentai	patriways and			
			ignaling networks that coordinate cell-c	ell interaction	ns and tissue			
		nt during emb						
4. Exp	lore ho	w disruptio	ns in molecular pathways lead to devel	opmental abn	ormalities and			
gen	etic disc	orders.						
Course	e Outco	mes:						
On the	success	sful complet	ion of the course, student will be able to:					
CO-1	Illustra		ructure and function of developmenta	al biology,	K 1			
		ogenesis	ration magaza of animals					
CO-2			zation process of animals nctions of embryonic development process		K2			
CO-3		K4 & K5						
CO-4		K6						
CO-5		strate the omental diso	impact of gene in developmental binders	iology and	K3			
K1	- Reme	mber; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	5 - Evaluate; H	K6 - Create			
Unit –			s of Developmental Biology		9 Hrs			
Structu	re of S	perm and o	evelopmental biology. Gametogenesis - Spe ocyte. Instructive and permissive interaction Important signaling pathways in vertebrate de	ons, competen				
Unit –	II F	ertilization]	Mechanisms and Molecular Organizers		9 Hrs			
			echanism of fertilization in mammal & sea un lar role of organizer	chin. Types of	fertilization.			
Unit –	III C	leavage to C	Gastrulation : Mapping Developmental Pat	hwavs	9 Hrs			
Cleava			Chick and mammals, Regulation of clea					
movements, Gastrulation in Xenopus, Chick and mammals. Fate Maps.								
Unit-	IV F	oundation o	f Verterbrate Development		9 Hrs			
Vertebrate Development: Formation of the neural tube, myogenesis, and hematopoiesis. Mechanism of vertebrate eye development								
Unit –	V G	ene Insights	and Developmental Disorders		9 Hrs			
	I							

Drosophila Maternal effect genes, induction at single cell level - differentiation of photoreceptors in ommatidia. Developmental disorders Spina bifida, Anencephaly, and craniorachischis, Cyclopia, Thanotrophic dysplasia

References

- 1. Developmental Biology, by Scott F.Gilbert, 2020. 9th edition, Sinauer Associates Inc.
- 2. "Developmental Biology" by Gerald M. Edelman and Rodney J. Taylor
- 3. "Developmental Biology" by Charles B. Kimmel, Brian K. Hall, and Alan M. Weiner
- 4. "Essential Developmental Biology" by Jonathan M. W. Slack 2012

				1	1			
Year	II	Program	M.Sc., Biotechnology	Code	23P3BTDE08			
Sem	III	DG	E I: NANO BIOTECHNOLOGY	Credits	3			
Hrs	45	05	EI: NANO BIOTECHNOLOGI	Effect from	2023-2024			
Course	e Objec	ctives:		•				
The m	ain obj	ectives of thi	s course are:					
1.		U	undamental Concepts					
2. Knowledge of Synthesis and Characterization Techniques								
3.			plem-solving skills to address complex challer	-				
4.		-	role of nanoparticles in imaging and diagno	stic technique	s, such as MRI			
		st agents and	biosensors.					
	e Outco							
On the	e succes	sful complet	ion of the course, student will be able to:	T				
CO-1	Under	stand the bas	es for Introduction to Nanotechnology		K1			
CO-2	To im	part understa	nding on Nanoparticle based Drug Delivery		K2			
CO-3	Fabric	ation of nano	materials for bone tissue grafting		K4 & K5			
CO-4	Metho	ods of Nanofa	brication		K3			
CO-5	Under	stand the app	lication of Nanotechnology		K5			
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K	5 - Evaluate;	K6 - Create			
Unit –			n to Nanotechnology		09 Hrs			
			ology- Scientific revolution, Feynman's vi					
			Nanomaterials – Nanoparticles, Nanotubes,		anofibers, Size			
depend	lent var	iation in the p	properties of Nanomaterials, Nature's Nanoph	enomena				
Unit –		A	n and Types of Nanomaterials		09 Hrs			
-			als, Top down and bottom up approaches, Bio	-				
			based Nano biomaterials, Carbon based					
			sed Nanostructures, Quantum dots, Magnet	ic Nanopartic	les, Nanofibres,			
Hydrog	gels, Fil	ms and Scaff	olds					
Unit –	III	Application	s of Nanomaterials		09 Hrs			
Applic	ation of	Nanomateria	als in Bone substitutes and Dentistry, Food an	nd Cosmetic ap	plications, Bio-			
sensors	s and I	Lab-on-a-chip	b, Bio-devices and implantable devices, B	ioremediation,	Nanomaterials			
for anti	i - micro	obial coating	- Medical implants. Application of Nanotech	nology in text	ile industry			
Unit–			ials in Medicine		09 Hrs			
		-	s and therapy, Implications of drug delivery,					
			anoparticles as drug carriers, Drug release		• •			
	•		ers, Nanoparticle technologies for cancer the					
Care an	nd Perso	onalized med	icine, Magnetic nanoparticles for imaging and	l Hyperthermi	а			
	V	Nano Toxic						

Nano toxicology, Portals of Entry of the nanoparticles into the Human Body, Bio-toxicity of Nanoparticles, Nanoparticles in Mammalian systems and Health threats, Biological response and cellular interaction of implant materials and scaffolds, Risk assessment and Safety Regulation of nanoparticles.

References

- 1. Nanobiotechnology: Nanoscience and Nanobiotechnology. Ralf S. Frese, Aharon Gedanken. Royal Society of Chemistry.1st Edition (2019) ISBN: 978-1788013801
- 2. Nanotechnology:Principles and Practices. Kulkarni, Sulabha K. 2014
- Advanced Nanomaterials and Their Applications. Bikash Sharma , Chandan Kumar Sarkar. 2024
- 4. The Nanobiotechnology Handbook. Yubing Xie. 2012
- 5. Nanotechnology and tissue engineering. T.Laurencin, Lakshmi S. Nair, CRC press. 2012
- 6. Nanotechnology: Health and Environmental Risks, Jo Anne Shatkin, CRC Press, 2013
- 7. Nanotechnology and Its Applications in Medicine: Anna Pratima Nikalje. 2017.

Curriculum for M. Sc Biotechnology MASTER OF SCIENCE

M. Sc SYLLABUS

[For the Candidates admitted under Autonomous, CBCS & OBE pattern]

(EVEN SEMESTER)

DEPARTMENT OF BIOTECHNOLOGY

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2015 Certified Institution | Affiliated to Periyar University Approved by AICTE | Re-accredited with "A" Grade by NAAC| Recognized under 2(f) and 12 (b) of UGC Act, 1956. Elayampalayam, Tiruchengode-637 205, Namakkal Dt., Tamil Nadu, India

M.Sc BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

GRADE	OBJECTIVE
	Biotechnology graduate students shall attain professional/industrial expertise by developing
PEO: 1	competent, creative and ever ready personality to accept recent, innovative and challenging
TEU: I	roles in Industry and Academic and Research sectors
	Students shall inculcate in the development of entrepreneurial traits in order to cuddle
	innovative opportunities by adapting emerging biotechnological concepts in terms of
PEO: 2	techniques with subsequent development of leadership in the course of start-up of small-
	medium scale biotech based industry
	Students shall progressively adapt, follow and learn the concepts of biotechnology
PEO: 3	continuously by aiding modern teaching tools
PEO: 4	Imparting the basic and outstanding knowledge in all terms of biotechnology
	Students shall acquire the concepts to disseminate the advanced biotechnological aspects and
PEO: 5	its cutting edge developments in specific and developing area in the field of Biotechnology

PROGRAMME OUTCOMES (POs)

GRADE	OUTCOME
	To train and develop students with the much needed biotechnological education, so that they
PO: 1	develop added competitive skill metrics (CSM) for industrial employment higher education
	and employment upon graduation
	To comprehend the assorted knowledge of biotechnical concepts domains and their
PO: 2	applicability in the development of value added products for the welfare of the society
1012	
	To develop a broad range of biotechnological skills and knowledge, development of general
PO: 3	and specific competences to meet-out current expectations and requirements of medical,
	pharmaceutical, bio-molecular and agricultural sectors
	To understand and merge the knowledge and concepts of biochemical, biophysical and bio
PO: 4	statistical domains
	To clarify various challenges in health care by integrating different biological domains
PO: 5	including clinical, immunological, pharmaceutical and cancer genomics

PROGRAMME SPECIFIC OUTCOMES (PSOs)

ostic
modern
cial,
1
of
d

DEPARTMENT OF BIOTECHNOLOGY

M.Sc. DEGREE COURSE IN BIOTECHNOLOGY Choice-Based Credit System

REVISED REGULATIONS AND SYLLABUS (w.e.f. 2023-2024)

(in compliance with TANSCHE)

The recent development in the field of biotechnology as rapid growth and the establishment of biotechnological industries. This has resulted in great demand for trained manpower in this field and has opened new career opportunities for the young generation of students to acquire skills, training and knowledge to enhance their thinking, comprehension and application abilities and prepare them to compete, succeed and excel globally. Sustained initiatives are required to reform the present higher education system for improving and upgrading the academic resources and learning environments by raising the quality of teaching and standards of achievements in learning outcomes. The academic research into innovations for practical use in society and economy, promoting efficient and transparent governance and management of the higher education system, enhancing the capacity of the higher education system to govern itself through coordinated regulatory reform and increasing both public and private sector investment in higher education, with special emphasis on targeted and effective equity-related initiatives.

Learning Outcomes based approach to Curriculum Planning:

The Learning Outcomes based approach to Curriculum planning aims to factor in on the aptitude, interests and strengths of the students during their progress through the coursework and at the same time focus on overall student attainment. The main objective of the learning outcomes based framework is to better equip the students in their pursuit of knowledge, with the required employability skills, innovation in research and entrepreneurship skills. The course is so designed with practical work that will help students to apply their theoretical knowledge in experimenting and exploring. The curriculum envisions that the student, once graduates as specialists in a discipline, have an important role to play in the newer developments and innovations in the future in the subject for the advancement of the discipline.

Graduate Attributes in Biotechnology:

Graduate attributes are the high-level qualities, skills and understandings that a student should gain as a result of the learning and experiences. They equip students and graduates for lifelong personal development, learning and to be successful in society. Students will be equipped to be active citizens both nationally and globally. The students graduating in biotechnology should also develop excellent communication skills both in the written as well as spoken language which are a must for them to pursue higher studies from some of the best and internationally acclaimed universities and research institutions spread across the globe. The graduate attributes reflect both disciplinary knowledge and understanding, generic skills, including global competitiveness all students in different academic fields of study should acquire/attain and demonstrate. Some of the characteristic attributes that a graduate should demonstrate are as follows

- Leadership Readiness
- Moral and ethical awareness/reasoning.
- Multicultural Competence.
- Life–long Learning.
- Communication Skills.
- Critical thinking.
- Problem-solvingng.
- Research-related skills.
- Scientific reasoning.
- Self-directed learning.
- Disciplinary knowledge.

Qualification Descriptors:

Upon successful completion of the course, the students receive an M.Sc. degree in Biotechnology. Biotechnology postgraduates of this department are expected to branch out into different paths of seeking advanced research-based knowledge, professional employment, or entrepreneurship that they find fulfilling. They will be able to demonstrate knowledge as well as skills in diverse fields of Biotechnology. This will provide a foundation, whichshall help them to embark on research careers by attaining doctoral positions in coveted institutions, as well as securing employment in research projects in industry or institutes. Besides research, they can get suitable teaching positions in Colleges and Universities as Assistant professors after qualifying National Eligibility Test (NET). It is expected that besides the skills specific to the discipline, the wider life skills of analysis, logical reasoning, scientific aptitude, communication skills, research and life ethics, and moral values will be inculcated in the students. The list below provides a synoptic overview of possible career paths provided by postgraduate training in Biotechnology:

- Biotechnology entrepreneurship
- Patents and Law
- Scientific Writing and Editing
- Document preparation and publication
- Research
- Industry
- Teaching
- Administration and Policy Making
- Scientific Communication

Teaching-learning process

The Learning Outcomes-Based Approach to curriculum planning and transaction requires that the teaching- learning processes are oriented towards enabling students to attain the defined learning outcomes relating to the courses within a programme. The outcome-based approach, particularly in the context of undergraduate studies, requires a significant shift from teacher-centric to learnercentric pedagogies, and from passive to active/participatory pedagogies. Planning for teaching therein becomes critical. Every programme of study lends itself to a well-structured and sequenced acquisition of knowledge and skills. Practical skills, including an appreciation of the link between theory and experiment, will constitute an important aspect of the teaching- learning process. Teaching methods, guided by such a framework, may include:

 \checkmark Classroom Teaching for intensely information-based topics. This is a very regular feature of all thecourses in Biotechnology.

 \checkmark **PowerPoint slides** for topics that involve information and use of PowerPoint presentations are also made whenever the lectures are to be summarized in a crisp and point-wise manner to highlight salient/important conclusions from the topics.

 \checkmark Classroom Discussions are a regular feature while teaching. The students are drawn into impromptudiscussions by the teacher during the process of teaching.

✓ **Video Displaying**, both real-time and animations, are used for topics that require 3D dimensional viewing of the biological mechanisms to drive the point home. These have proved to be very helpful while teaching concepts of molecular biology like DNA replication, transcription and translation.

 \checkmark Model Making is also used especially for understanding and building a perception of the students.

✓ **Laboratory Practical** are an integral part of every course included in the PG programme in Biotechnology. The is also a daily affair for PG students of Biotechnology.

✓ **Problem Solving** is encouraged during the laboratory work.

✓ **Group Activity** as well as discussions with the laboratory supervisor/ among the students themselves/ Mentor is also encouraged during laboratory work.

 \checkmark **Project Work** is included in the programme where students work individually or in groups to design experiments to solve/answer a problem suggested by the Mentor or identified by the students in consultation with the Mentor. The students are mentored regularly during the duration of the project.

 \checkmark **Presentations by the Students** are regularly done. The students are mentored in the presentation of data, interpretation of data and articulation with the students/teachers/Research Scholars during their presentation.

 \checkmark **Presentations by Experts** in different specialties of Biotechnology are arranged to broaden the horizons of the students.

✓ **Interaction with Experts** is also encouraged during/after presentations to satisfy/ignite the curiosities of the students related to developments in the different areas of Biotechnology.

 \checkmark Visit to Industries/Laboratories related to Biotechnology like fermentation, food, pharmaceuticals; diagnostics etc. are organized to acquaint the students with real-life working environments of the professional biotechnologist with a view to broadening their perspective on the subject of Biotechnology.

Assessment methods

The students of PG Biotechnology program must achieve the desired results in terms of the learning outcomes to be professionally sound and competitive in a global society. Achieving the desired learning outcomes is also imperative in terms of job employment leading to a happy and prosperous individual further leading to a happy and prosperous family and thereby a happy and

prosperous society or nation. The assessment tasks are pivotal to getting authentic feedback for the teaching- learning process and mid-course corrections and further improvements in the future. The assessment tasks are carried out at various stages of the duration of the PG Biotechnology programme like Mid-term assessments, End-term assessments, Semester examinations, Regular assessments, viva-voce, etc. The assessment tasks are listed below:-

 \checkmark Short-Answer Questions during term and semester examinations are used to assess the ability of the student to convey his thoughts in a coherent way where prioritization of the information interms of their significance is tested.

✓ **Problem Solving questions** are generally given during the laboratory work.

✓ **Surprise Quizzes** are regularly used during continuous assessment while the teachinglearning process is continuing which prepares the student to quickly recall information or quickly analyze a problem and come upwith proper solutions.

✓ **Impromptu Opinions** on biotechnological problems are sought from student during regular teaching- learning which help them to think quickly in a given context. This help build their ability to come up with solutions problems that the students might not have confronted previously.

 \checkmark **Data Interpretation** is also another assessment task that is used to develop the analytical skills of the students. This assessment is used during laboratory work as well as during project work.

✓ Analytical Skills are assessed during work related to several experiments like enzyme kinetics, growth of bacteria and Bacteriophages, and mutation frequencies.

✓ **Paper/ Project presentations** are used to assess the articulation skills of the student. These are carried out both during the duration of the teaching-learning processes as well as during end- Semester examinations.

✓ **Report Writing** is used to assess the keenness of the students for details related to Biotechnology while visiting laboratories/industries as students invariably are required to submit a report after such visits.

 \checkmark Assignment Writing is used to assess the writing abilities of the students during midterm vacations.

✓ **Viva-voce** during the laboratory working hours and during laboratory, examinations are used to assess the overall knowledge and intelligence of the students.

Key Words:

Biotechnology, Teaching, Learning outcomes, Curriculum, Curriculum Framework, Programme outcomes, Course outcomes, PG Programme, Postgraduate programme, Teachinglearning processes, Assessment Tasks, Evaluation Tasks, Online Courses, MOOCS, SWAYAM, UGC, India, Higher Education Institutions.

1. CONDITIONS FOR ADMISSION:

A Candidate with a Bachelor's Degree in Science in the disciplines of Biotechnology, Biology, Botany, Zoology, Microbiology, Genetics, Chemistry, Biochemistry, Physics, Agriculture from this University or B.E/ B.TECH (Biotech), B.V.Sc, MBBS, BDS or any area of Biological Sciences / Agriculture and allied sciences; Veterinary and allied sciences or an examination of some other University accepted by the Syndicate as equivalent there to shallbe for the M.Sc Degree Examination of this University after a course of two academic years in an Affiliated Colleges of this University.

2. DURATION OF THE COURSE:

The duration of the course is for two academic years consisting of four semesters.

3. STRUCTURE OF THE COURSE

The course is organized on semester basis with a total off our semesters. In the first, second and third semesters, there are three (core) theory papers (9 hrs per week), one Core Practical (15hrs per week) and Two elective/ optional papers(4hrs per week), per semester and in the fourth semester, there are only one core theory paper(Research Methodology) (4hrs per week), a core project/ dissertation work constituting a total of 20 hrs per week, two electives (4hrs per week), and a Soft skill program (2hrs perweek).

Elective paper: Each student shall opt for a comprehensive, interactive course with one of the faculty member. The topic of specialization and course content will be determined by the department/ course advisor.

Core Practical Laboratory: Independent practical shall be held under each component. It is recommended that the practical training be organized as an exercise rather than simple demonstration. The students must actually perform the experiments.

4. ELIGIBILITY FOR THE AWARD OF DEGREE:

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed course of study in a college affiliated to the University for a period of not less than two academic years, passed the examination of all the four semesters prescribed earning minimum of 91 credits and fulfilled such conditions as have been prescribed therefore.

A candidate shall be eligible for the award of the degree only if he/she has undergone the prescribed courses on Soft Skills and internship in addition to the courses prescribed by the respective Board of Studies for the subject of the Masters Degree. For two years Master's Degree Programme, a candidate shall undergo a minimum of 4 courses ($4 \times 2=8$ credits) from the courses on Soft skills.

A two year Master's Degree student shall undergo 4-6 weeks (2 credits internship during the summer vacation of the First year and submit a report in the beginning of third semester. The report will be evaluated in third semester and the marks forwarded to the University along with third semester internal assessment (CIA) marks.

5. EXAMINATIONS:

There shall be four semester examinations: first semester examination sat the middle of the first academic year and the secondsemester examination at the end of the first academic year. Similarly,

the third and fourth semester examinations shall be heldat the middle and the end of the second academic year, respectively. Practical examination shall be conducted independently at the end of even semesters. For practical examination, a single comprehensive) (covering different courses offered during that semester) practical examination (6hrsperday) beheld for each component of the core practicalat the end of even semesters.

Examinations for the courses on soft skills will be held along with the semester examinations of the core an delective courses. There is no written examination for internship. A student shall submit a report after completing the summer internship. The report will be evaluated by two examiners within the Department of the college/ institution.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

DEPARTMENT OF BIOTECHNOLOGY

M.Sc., Biotechnology Curriculum

(Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2024-2025 onwards)

~	Course	Course Code	Course	Credits	Hours Maxim		imum	num Marks	
S.No	Component	Course Coue	Course	Cr	Т	Р	Int	Ext	Total
			SEMESTER - II						
1	Core – 4	23P2BTC04	Plant Biotechnology	4	4		25	75	100
2	Core – 5	23P2BTC05	Animal Biotechnology	4	4		25	75	100
3	Core – 6	23P2BTC06	Microbiology	4	4		25	75	100
4	Core – 7	23P2BTC07	Genetic Engineering	4	4		25	75	100
5	Core Practical-III	23P2BTCP03	Lab in Plant and Animal Biotechnology, Microbiology & Genetic Engineering	3		6	40	60	100
6	DSE – II	23P2BTDE05	Pharmaceutical Biotechnology	2	3		25	75	100
7	DSE – II	23P2BTDE06	Environmental Biotechnology	2	3		25	75	100
8	Soft skill - II	24P2BTSP02	Lab in Python & Linux	2		2	40	60	100
Total					22	08	230	570	800
Theorem	•							•	
Pract	ical 02								

SCHEME OF EXAMINATION

				•				
Year	Ι	Program	M.Sc., Biotechnology	Code	23P2BTC04			
Sem	II	Com	e – 4 : PLANT BIOTECHNOLOGY	Credits	4			
Hrs.	60	Core	Effect from					
Course	Course Objectives:							
			s course are:					
			anding of the fundamentals and significance of	-				
			ineering techniques and gene transfer methods	-				
	-		e techniques and their applications in agricultur					
			and function of plant genomes and the role of cations of transgenic plants and biotec		-			
5.1	manage		cations of transgenic plants and blotec	inology in	environmentar			
Course	e Outco							
			ion of the course, student will be able to:					
CO-1			c principles and tools of plant biotechnology.		K1, K2			
CO-2	Apply	tissue culture	e techniques for plant propagation and conserv	ation	K3, K4			
CO-3	Interpr	et genomic d	ata and employ molecular breeding techniques	5	K3, K5			
	Assess	the applicat	ions and implications of transgenic plants ir	agriculture				
	and the	e						
CO-4	enviro	nment			K5, K6			
CO-5	Analyz	ze ethical and	intellectual property issues in plant biotechno	logy	K5, K6			
K1	- Reme	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	- Evaluate; K	6 - Create			
Unit –			to Plant Biotechnology		12 Hrs			
			echnology- Scope, historical development, and	-				
			re and function of plant cells. Genetic Engine	-	-			
			ses, and vectors, Methods of gene transfe	ξ U				
SSR, S		, dionstics).	Gene Expression and Regulation in plants. Gen	ietic Markers-	KFLP, AFLP,			
Unit –		lant tissue c	ulture and Micropropagation		12 Hrs			
			Culture- Principles, techniques, and app	lications. To	tipotency and			
			hbryogenesis, callus formation, and regeneration		Tissue Culture-			
	Meristem culture, embryo culture, anther culture. Micropropagation and Somatic Hybridization-							
Techni	ques a	nd application	ons in clonal propagation and hybrid cro	op production	n. Germplasm			
Conser	Conservation- Cryopreservation and in vitro storage methods for endangered plant species.							
	Unit – IIIPlant Genomics and Molecular Breeding12 Hrs							
			nology- Structure and sequencing of plant ger		-			
-	proteomics, and metabolomics. Marker- Assisted Selection (MAS)- Role in plant breeding, QTL							
	-	-	d Genetic Improvement- Conventional vs. mo		• • • •			
	-	-	e plants. Genetic Biodiversity and Conserva	tion- Molecul	ar methods to			
assess	assess genetic diversity in plant populations.							

Unit– IV	Applications of Plant Biotechnology	12 Hrs					
Transgenic	Transgenic Plants- Development and applications in agriculture (disease resistance, pest resistance).						
Biofortifica	tion- Enhancing nutritional value in crops -Golden Rice & amp; Vitamin	A fortification.					
Phytoremed	iation- Use of plants for environmental cleanup, heavy metal accumulation	n, and removal.					
Molecular 1	Farming- Production of pharmaceuticals and industrial enzymes in plan	nts. Biotic and					
Abiotic Stre	ess Tolerance-Engineering plants for drought, salinity, and heat resistance.						
Unit – V	Regulatory, Ethical, and Intellectual PropertyIssues	12 Hrs					
Biosafety a	and Bioethics in Plant Biotechnology- Regulatory frameworks for C	GM crops and					
environmen	tal safety, Ethical considerations in genetic modification. Intellectual H	Property Rights					
(IPR)- Pater	nts, copyrights, and plant breeder's rights. Public Perception and Socioecc	onomic Impact-					
Pros and co	ns of GM crops in society. Environmental Impact-Ecological consideration	ns, biodiversity,					
and conserv	ation concerns. Future Trends in Plant Biotechnology.						
References							
	jwani, S. S., & Razdan, M. K. Plant Tissue Culture: Theory	and Practice.					
Else	vier,1996.						
2. Cha	wla, H. S. Introduction to Plant Biotechnology. Science Publishers, 2012.						
3. Slate	er, A., Scott, N. W., & amp; Fowler, M. R. Plant Biotechnology: The Genetic	ic Manipulation					
of P	lants. Oxford University Press, 2008.						
4. Trig	iano, R. N., & Gray, D. J. Plant Tissue Culture, Deve	elopment, and					
Biot	echnology.CRC Press, 2010.						
5. Taiz	, L., & amp; Zeiger, E. Plant Physiology and Development. Sinauer Associa	tes, 2018.					
6. Glick, B. R., & amp: Pasternak, J. J. Molecular Biotechnology: Principles and Applications of							

6. Glick, B. R., & amp; Pasternak, J. J. Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press, 2010.

	1			1			
Year	Ι	Program	M.Sc., Biotechnology	Code	23P2BTC05		
Sem	II		: ANIMAL BIOTECHNOLOGY	Credits	4		
Hrs.	60	Core – 5	2024-2025				
Course	e Objec	tives:					
The m	ain obj	ectives of thi	s course are:				
1.	To pro	vide an in-de	pth understanding of animal biotechnology and	d cell culture t	echniques.		
2.			nethods of genetic manipulation in animal of	cells and expl	lore transgenic		
		applications.					
			cell technology, tissue engineering, and their t	therapeutic app	plications.		
	e Outco						
On the		Ĩ	ion of the course, student will be able to:				
CO-1		stand the b cance in biot	asics of animal cell culture, its require echnology	ements, and	K1, K2		
CO-2	Apply transg	e	of genetic manipulation techniques for and explore gene editing tools like CRISPR	developing	K3, K4		
CO-3	-		technology, tissue engineering, and their appine and tissue repair	plications in	K3,K4& K5		
CO-4			rstanding of cloning and reproductive tec enetic improvement	hniques for	K4, K5		
CO-5		•	ethical, biosafety, and regulatory consideration forecast emerging trends	ns in animal	K5, K6		
K1	- Reme	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	- Evaluate; K	K6 - Create		
			Animal Biotechnology and Cell Culture Tec		12 Hrs		
			ology- Overview, history, and applications. A				
		•	ondary and continuous cell lines), requirement	-			
-	-		- Types of culture media (natural and synth				
	-	-	l sterilization of media. Cell Growth and Ma , and measuring cell viability and cytotoxicity.		owth kinetics,		
Unit –	II Ge	netic Manip	ulation in Animal Cells		12 Hrs		
Gene 7		A	: Microinjection, electroporation, lipofection	, and viral ve			
Engine	ering in	Animals- C	reation of transgenic animals (mice, sheep, fig	sh) and applic	ations. CRISPR		
and Ot	ther Ge	ne-Editing T	ools- Mechanisms, design, and application	of CRISPR/C	as9 and other		
modern gene-editing techniques. Applications of Transgenic Animals.							
Unit –			chnology and Tissue Engineering		12 Hrs		
		• •	yonic, adult, and induced pluripotent stem				
		-	em Cell Culturing- Culture requirements, diff				
-	ipotenc	y. Therapeuti	c Applications of Stem Cells. Ethics and Reg	gulatory Aspec	ets and clinical		
trials.							

Unit-IVAnimal Cloning and Reproductive Biotechnology12 Hrs

Animal Cloning- Somatic cell nuclear transfer (SCNT), reproductive cloning and therapeutic cloning. In Vitro Fertilization (IVF) and Embryo Transfer- Techniques, applications, and limitations. Artificial Insemination (AI) and Embryo Cryopreservation- Process, success rates and applications in animal breeding. Applications in Genetic improvement, cloning for endangered species and biodiversity conservation.

Unit – V Applications and Ethical Issues in Animal Biotechnology

Biomedical Applications- Production of recombinant insulin, vaccines and monoclonal antibodies using animal biotechnology. Xenotransplantation- Use of animal organs for human transplantation, challenges and ethical concerns. Biosafety and Bioethics- Biosafety levels, ethical guidelines, animal welfare concerns and regulatory frameworks.

References

- 1. Freshney, R. I. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. Wiley-Blackwell, 2016.
- 2. Butler, M. Animal Cell Culture and Technology. Taylor & Francis, 2004.
- 3. Masters, J. R. W., and Stacey, G. N. Animal Cell Culture: A Practical Approach. Oxford University Press, 2000.
- 4. Portner, R. Animal Cell Biotechnology: Methods and Protocols. Humana Press, 2007.
- 5. Glick, B. R., Pasternak, J. J., and Patten, C. L. Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press, 2010.

12 Hrs

Year	Year I Program M.Sc., Biotechnology Code						
Sem	Π			Credits	4		
Hrs.	60	60 Core – 6 : MICROBIOLOGY Effect from					
Course		2024-2025					
The mai	in obj	ectives of this	s course are:				
To prov	ide a c	omprehensiv	e knowledge on taxonomy and microbial div	ersity, growth,	, their harmful		
effects a	nd ber	eficial role o	f microorganisms in agriculture and environm	ent.			
Course	Outco	mes:					
On the s	succes	sful complet	on of the course, student will be able to:				
	To uno	lerstand the 1	najor discoveries of microbiology and descri	be microbial			
CO-1	diversi	ty, Microbial	growth and metabolism.		K2		
aa	-		knowledge about microbial culture, ident and working of microscopes and sterilization		K3, K4		
			udents on host microbe interaction and Epid	-	· · · · · · · · · · · · · · · · · · ·		
00.0		vial disease	ducines on nost interoce interaction and Epid	chilology of	K3, K5		
CO-4	To upo	late the know	ledge on epidemic and pandemic diseases.		K4, K5		
	To ass	ess and app	raise the role of novel microbes in enviro	onment and			
CO-5	integra	te them in sp	ecific innovative approaches.		K5, K6		
K1 -	Reme	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K5	- Evaluate; K	6 - Create		
Unit – I	His	story and Mi	crobial Taxonomy		12 Hrs		
History	and m	icrobial taxor	nomy: Major discoveries related to the field o	f microbiology	y: Antony Von		
Leeuwer	nhoek,	Louis Paste	eur, Robert Koch and Edward Jenner. Mic	crobial taxono	my: Bacteria,		
viruses,	fungi,	algae and	protozoa, Microbial diversity: Biovars, Ser	ovars and Pric	ons, Microbial		
growth	and n	netabolism:	Microbial growth: Growth curve, factors	affecting grow	wth, Microbial		
metaboli	ism- N	lethanogenes	is, acetogenesis and auxotrophs.				
Unit – I	I Mi	crobial Cult	re, Identification, and Control		12 Hrs		
Microbia	al cultı	ure, identifica	tion, and control: Nutritional requirements fo	r growth - Gro	wth media and		
types, P	ure cul	ture techniqu	es: Serial dilution and plating methods, Stain	ing methods -	Principles and		
• 1		• •	nd differential), Identification of bacteria -				
rRNA se	equenc	ing. Microsc	opy: principles and applications of Bright fi	eld, florescent	and Scanning		
		-	crobial growth control: Physical Method				
Tempera	atures,	High Pressur	e, Desiccation, Osmotic Pressure, Radiation;	Chemical Meth	nods		
Unit – I	II	Host-Microb	e Interaction and Epidemiology		12 Hrs		
			nd Epidemiology: Human microbiome; Skin				
•	-	•	ationship of microbes: Symbiosis, Mutualism				
		-	gy of microbes: causes, types and transmission	on of epidemic	, endemic and		
pandemi	ic dise	ases.					
Unit– I	V]	Microbial Di	seases		12 Hrs		

Department of Biotechnology | VICAS | Autonomous

Microbial Diseases: Microbial diseases - General characteristics, pathogenesis, laboratory diagnosis and control measures of Pandemic and Epidemic diseases: Tuberculosis, Leprosy, Cholera, Typhoid, COVID-19, Yellow Fever, Flu, AIDS, Ebola, Zika Virus, Small Pox, Dengue, Chickungunya, Malaria, filariasis, Candidiasis, superficial mycosis

Unit – V Agricultural and Environmental Microbiology

12 Hrs

Agricultural and Environmental Microbiology: Biological nitrogen fixation, free living, symbiotic nitrogen fixation, mechanism of Nitrogen, Biofertilizers- types and applications; Rhizosphere effect. Biogeochemical cycles-Carbon, Nitrogen, Sulphur and Phosphorous; Methanogenic bacteria Extremophiles- Thermophiles Acidophiles, Halophiles and alkalophiles; Biotechnological application of extremophiles

References

- Joanne Willey, Linda Sherwood, Christopher J. Woolverton, (2017). Prescott's Microbiology, (10th edition), McGraw-Hill Education, ISBN: 978-1259281594.
- 2. Maheshwari D K, Dubey R C 2013. A Textbook of Microbiology.4th Edn S Chand Publishing India.
- 3. Ananthanarayan and Paniker's (2017) Textbook of Microbiology, (10th edition), The Orient Blackswan, ISBN: 978-9386235251.
- 4. Benson HJ. (1999). Microbiological Applications: A Laboratory manual in General Microbiology, 7th Edition, McGraw Hill. 5
- Managing epidemics- Key facts about major deadly diseases, World Health Organization (WHO) 2018.
 O'Flaherty, Vincent & Collins, Gavin & Mahony, Thérèse. (2010). Environmental Microbiology, Second Edition. 10.1002/9780470495117.ch11.
- 6. Agriculture Microbiology, 2016. E-Course Developed By TNAU (ICAR)

Year	Ι	Program	M.Sc., Biotechnology	Code	23P2BTC07			
Sem	II	Co	e – 7 : GENETIC ENGINEERING	Credits	4			
Hrs.	60	COL	2024-2025					
Course	Course Objectives:							
The m	ain obje	ectives of thi	s course are:					
-			gh knowledge on the basics of all the biotechn	• •	ation on plant			
and and	imals. T	he student w	ill get to understand the core concepts of biote	chnology.				
	e Outco							
On the		-	ion of the course, student will be able to:					
		-	basic steps of gene cloning and the role of e	=				
CO-1		-	for gene manipulation, transformation and	genetic	K2			
	engine	<u> </u>		• • • • • •				
CO-2	-	g detailed know	owledge of gene transfer methods and identify	ing suitable	K3, K4			
002			al knowledge in the techniques, tools, and app	lightion and	110, 11 I			
CO-3	-	-	genetic engineering.		K3, K5			
			ome mapping and sequencing and method	s for gene	,			
CO-4	therapy	-	sine mapping and sequencing and method	s ioi gene	K4, K5			
CO-5	1.		techniques involved in genetic engineering		K5, K6			
				E h 4 V	-			
Unit –			Understand; K3 - Apply; K4 - Analyze; K5	- Evaluate; K	o - Create 12 Hrs			
			g and Genetic Engineering Tools ineering tools. Nucleic acid manipulating enz	vmes Promote				
	-	-	d in rDNA technology. Restriction digestion	-				
		-	Construction of gene libraries.	.,	······			
Unit –			ors in Bacteria		12 Hrs			
			and its derivatives; Cloning vectors for gram	n negative bac				
		-	Lambda bacteriophage vectors, filamentous	-				
-		-	n-positive bacteria (Bacillus subtilis).					
Unit –	ШС	loning in Ve	east and Eukaryotic vectors		12 Hrs			
			nyces cerevisae. Life cycle and types of vector	rs; Eukaryotic				
			pression); Specialized cloning vector for cDNA					
	-	-	ng;Vectors for cloning promoters and termina	•	-			
copy n	umber.				-			
Unit- IV Nucleic acid Hybridization and Sequencing 12 Hrs								
Nuclei			echniques; Molecular probes (Types of probe	s and its constr				
labelin	g. Nick	translation, E	End labeling and Random primer labeling.Blot	ting Technique	es. Polymerase			
chain 1	reaction	and its vari	ants; DNA fingerprinting; DNA sequencing	first generation	on sequencing			
method	ls (Max	am and Gilbe	ert sequencing, Sangers Dideoxy sequencing,	Pyrosequencin	ng, PCR based			
sequen	cing and	l hybridizatio	on sequencing).					

Unit – V	Unit – V Applications of Genetic Engineering								
Site directed	Site directed mutagenesis; DNA microarray; chromosome walking and jumping.Molecular techniques								
in prenatal	diagnosis gene therapy, Transgenic animals (knockout mice) and pla	nts (Flavrsavr							
() D1		• 1 • 4							

tomato), Pharmaceutical products (Vaccine, Humulin, etc), Crop improvement. Pesticide resistance, herbicide resistance, transgenic animals and GM foods; Modern Concepts in Genetic Analysis.Genome editing – CRISPR-Cas9, Prospects Safety and Ethics.

References

- 1. T.A. Brown, 2010. Gene cloning and DNA analysis: An introduction, 6th edition, Wiley-Blackwell.
- Sandy B.Primrose and Richard Twyman, 2006. Principles of Gene Manipulation and genomics, 7th
- 3. edition, Wiley-Blackwell.
- 4. Lewin, 2009. Genes X, 10th edition, Jones & Barlett Publishers
- 5. Raymond Rodriguez and David T.Denhart 2003.Vectors, A survey of molecular cloningvectors
- 6. and their uses
- 7. Errst-L. Winnacker 1987. From genes to clones. Introduction to Gene Technology,
- 8. Ed. David V. Geoddel 2002.Gene Expression technologies. Methods in enzymology (Vol.185)
- 9. William Wu, Michael J.Welsh, Peter B.Kaufrmar, Helen H.Zhang 2001. Methods in Gene
- 10. Biotechnology

Year	Ι	Program	M.Sc., Biotechnology	Code	23	P2BTCP03		
Sem	II	Core P	ractical – III : LAB IN PLANT AND	Credits		3		
Hrs	45	ANIMAL BIOTECHNOLOGY, MICROBIOLOGY & GENETIC ENGINEERING		Effect from		2024-2025		
Cours	e Objec	tives:						
			s course are:					
			chniques for both plant and animal biote	chnology, en	suring	g successful		
			preparation, and culture maintenance.					
			pply in vitro plant tissue culture technique	es, including s	seed g	germination,		
			d plantlet acclimatization.					
		elop hands-or	n skills for isolating and studying organell	les, such as c	hloro	plasts, from		
plant ti								
	e Outco							
On the			ion of the course, student will be able to:					
CO1	11.	1	niques and prepare media for plant and an	nimal tissue	K 1	, K2 & K3		
COI	culture	es, ensuring o	ptimal conditions for growth		KI	, K2 & K3		
Demonstrate plant tissue culture skills, including surface sterilization, in								
CO2	CO2 vitro seed germination, shoot/root induction, and acclimatization of					K2, K3 & K4		
	plantlets							
G Q Q	Isolate	e and examin	e chloroplasts from plant tissue for bioch	nemical and		110 0 114		
CO3	physic	logical studie	28		K2	,K3 & K4		
	Establ	ish primary a	nimal cell cultures from different tissues, er	nsuring				
CO4			l culture maintenance	-	K3	,K4 & K5		
	Evalua	ate cell viabil	ity and health using MTT and Trypan Blu	e exclusion				
CO4			ptoxicity and cell proliferation		K4	, K5 & K6		
K1 - R			lerstand; K3 - Apply; K4 - Analyze; K5 -	Fyaluate: K <i>t</i>	5 - Cr	reate		
S.No			Experiments	L'ununc, IX		Hours		
0.110			Plant Biotechnology			nouis		
1	Media	Preparation a				3		
2	Media Preparation and Explants Sterilization Callus, Shoot & Root Induction					5		
2	Isolation of Protoplast from plant cell.					4		
5	Isoluti	<u></u>	Animal Biotechnology			•		
4	Asepti	c Technique	and Media Preparation			3		
5	1	1				5		
5		Primary culture of Animal Cells (Kidney, skin, & spleen)5Cell Viability Assay (MTT and Trypan Blue Exclusion)5						

	Microbiology						
7	Enumeration of microorganism from soil, water and air	4					
8	Staining of Gram, Negative and spore.	3					
9	Determination of growth of bacteria – <i>E.Coli</i> (Growth curve)	3					
	Genetic Engineering	·					
10	Preparation of plasmid DNA by alkaline lysis method	4					
11	Preparation of competent cell using calcium chloride.	3					
12	Transformation.	3					
Refer	ences	·					

- 1. Plant Tissue Culture: Techniques and Experiments by Roberta H. Smith Comprehensive resource on plant tissue culture protocols and applications.
- 2. Principles and Techniques of Biochemistry and Molecular Biology by Keith Wilson and John Walker Covers techniques for cell viability assays and organelle isolation.
- 3. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications by R. Ian Freshney Essential guide for animal cell culture techniques.
- 4. Practical Manual of Plant Biotechnology by K. R. K. Easwari and V. S. K. Prasad Useful for applied plant biotechnology methods, including seed germination and hardening.
- 5. Molecular Biology of the Cell by Bruce Alberts et al. Detailed reference on cellular functions, useful for chloroplast isolation and primary culture background.
- 6. Biotechnology Procedures and Experiments Handbook by S. Harisha A comprehensive lab handbook for both plant and animal biotechnology techniques.

Year	Ι	Program	M.Sc., Biotechnology	Co	de	23P2BTDE05		
Sem	II	DS	E – II : PHARMACEUTICAL	Cre	dits	2		
Hrs.	45		BIOTECHNOLOGY	Effect	from	2024-2025		
Course	Course Objectives:							
The m	ain obj	ectives of this	course are:					
The su	bject in	nparts knowled	dge on the fundamentals of pharmaceutica	al bioted	chnolog	gy. The student		
will be	provid	ed with a basic	knowledge and understanding about the pl	narmace	utical j	products		
produc	ed base	d on biotechno	logical methods and its biomedical applicat	ions.				
Course	e Outco	omes:						
On the			on of the course, student will be able to:					
CO 1	-		nponents of pharmaceutical and biotechnole	ogy indu	ıstry	17.1		
CO-1			lications of biosensor			K1		
CO^{2}			ic, technical and economic aspects of vaccin	ne & rD	NA	V2 V4		
CO-2	techno	0.		<u> </u>		K3, K4		
CO-3			oncepts of protein Engineering, therapeutic	proteins	and	K2		
0-5	-	e immobilizati	-	· ·	1 + 1	K2		
CO-4	Descr		oncepts of hybridoma technology,	micro	obial	K2, K4		
			d microbial bio-transformed products.	V	·	112, 114		
CO-5	Expla: transp		components of somatic gene thera ermenter and bio safety methods	ipy, X	eno-	K1,K2, K5		
K1	_		Inderstand; K3 - Apply; K4 - Analyze; K	5 - Eval	uate:]	K6 - Create		
Unit –	C		echnologies in Pharmaceutical Biotechn			09 Hrs		
		to concepts	and technologies in pharmaceutical b	iotechno	ology	and industrial		
		-	orking and applications of biosensors in ph			Industries;		
			rmacology: Scope, applications and Importa					
		-	zyme Production			09 Hrs		
			onomic aspects of vaccine research and	develo	oment,			
bacteri	al vacc	ines, toxoids, v	viral vaccine and antitoxins, Storage condit	ions and	d stabil	lity of vaccines,		
Recom	binant	DNA technolo	ogy, Application of rDNA technology an	d gener	tic eng	gineering in the		
produc	tion of:	(i) Interferon	(ii) Vaccines - hepatitis- B (iii) Hormones -	- Insulir	n, Brief	f introduction to		
Protein	n Engino	eering, Therape	eutic proteins, Production of Enzymes- Gen	eral con	nsidera	tion – Amylase,		
Catalas	se, Pero	oxidase, Lipase	e,Protease, Penicillinase, Methods of enzy	yme im	mobiliz	zation and		
applica	tions.							
Unit –	Unit – III Biotech Product Formulation and Microbial Biotransformation 09 Hrs							
		chnology - Pro	duction, Purification and Applications, For	mulation	n of bio			
Rituxir	nab, In	troduction to M	licrobial biotransformation and application	s, Study	of the	production of –		
penicil	lins, ci	tric acid, Vit	amin B12, Glutamic acid and Griseofu	lvin S	omatic	gene therapy,		
Xenotr	Xenotransplantation in pharmaceutical biotechnology, Large scale production fermenter design and							
its vari	ous cor	trols, Biosafety	y in pharmaceutical industry.					

Unit-IVPharmacology of Plant Based Drugs09 HrsPharmacological activity of Plant drugs, Plant Chemicals in modern pharmacology;iochemistry andpharmacology of atropine, caffeine, ephedrine, opioids, taxol, vinca alkaloids, synthetic substitutes for
therapeutically active plant constituents; drug improvement by structure modification and bio-
transformation. Criteria for pharmacological evaluation of drugs.09 HrsUnit - VClinical Pharmacology and Drug Therapy09 Hrs

Clinical Pharmacology, Drug therapy, therapeutic situation, benefits and risk of use of drugs, Mechanism of drug action, Therapeutic efficacy, Therapeutic index, tolerance, dosage forms and routes of drug action, factors affecting drug action; Adverse Drug reactions and drug poisoningclassification and causes of ADR; principle clinical manifestations and treatment of ADR, General principles of management of drug poisoning; antidotes, classification of drugs.

References

- 1. Harbans lal, 2011. Pharmaceuticals biochemistry. CBS Publishers and distributors Pvt. Ltd, Chennai.
- 2. Carlos A. Guzmán and Giora Z. Feuerstein, 2009. Pharmaceutical Biotechnology, 1st edition, Springer.
- 3. Daniel Figeys (Ed.). 2005. Industrial Proteomics: Applications for Biotechnology and Pharmaceuticals. Wiley, John & Sons, Incorporated.
- 4. Kayser, O and Muller R.H.. 2004. Pharmaceutical Biotechnology Drug Discovery and Clinical Applications. WILEY-VCH
- 5. Leon Shargel, Andrew B. C. Yu, Susanna Wu-Pong, and Yu Andrew B. C. 2004. Applied Biopharmaceutics & Pharmacokinetics. McGraw-Hill Companies
- 6. Stefania Spada, Garywalsh. 2004. Directory of approved biopharmaceutical
- 7. Gary Walsh. 2003. Biopharmaceutical, Biochemistry & Biotechnology.
- 8. Heinrich Klefenz. 2002. Industrial pharmaceutical biotechnology.
- 9. Thomas Lengauer (Ed.). 2002. Bioinformatics from Genomes to Drugs. Volume I& II.WileyVCH.
- 10. John F. Corpenter (editor), Mark C. Manning. 2002. Rational Design of stable formulation Theory and Practice (Pharmaceutical Biotechnology). Plenum, US. Ist edition.

Year	Ι	Program	M.Sc., Biotechnology	Code	23P2BTDE06				
Sem	II			Credits	2				
Hrs.	45	DSE - II : E	NVIRONMENTAL BIOTECHNOLOGY	Effect from	2024-2025				
Course	e Objec	ctives:							
	•	ectives of this							
provide	ed with	-	edge on the fundamentals of ecology and p ledge and understanding about the functions of al tools.						
Course									
		-	ion of the course, student will be able to:						
CO-1	Expla	in various was	te management methods		K2				
CO-2	Classi	fy potential m	ethods of biodegrading organic pollutants.		K3, K4				
CO-3	Exam	ine the technic	ques involved in remediation of polluted envi	ronments	K3, K5				
CO-4	Asses	s types of poll	ution & its control		K4, K5				
CO-5	Comp	ile biotechnol	ogical approaches to degrade xenobiotic com	pounds	K5, K6				
K1	- Rem	ember; K2 - 🛛	Understand; K3 - Apply; K4 - Analyze; K5	5 - Evaluate;	K6 - Create				
Unit –		Environmenta Strategies	al Pollution and Its (Control	09 Hrs				
Enviro	nment:	Basic con	cepts and issues; Environmental mana	gement and	Conservation,				
			gencies involved in conservation. Environ		• •				
-		ts control stra	ategies -Air pollution, Soil pollution, Wate	er pollution, (Dil pollution &				
Unit –	III	Biofilm Kinet	ics and Reactor Engineering		09 Hrs				
Biofiln	n Kinet	ics: Complete	ely mixed biofilm reactor-Soluble microbial	products and	l inert biomass-				
-			on. Reactor types:- batch reactor, continu						
Plugflo			tor& MBR. Engineering design of reactors-	Reactors in sei	ries.				
Unit –	III V	Wastewater N	Management Processes and Trea	atment	09 Hrs				
Waste	water	management,	source of waste water, Waste water treatm	nent- physical	, chemical and				
-			biology of Waste water; Exploring the rol						
			on aerobic and anaerobic processes. Un	e	e				
		ssing wastewa	nd (BOD), Chemical Oxygen Demand (COD ter quality), and Total L	Dissolved Solids				
Unit-		·	sment and Biosensor Applications		09 Hrs				
Overview of toxicity types (acute, chronic, sub-lethal) and standard tests for evaluating toxicity levels									
in envi	in environmental samples. Application of biosensors for detecting pollutants and toxic materials, with								
		-		ants and toxic	materials, with				

. A de la Reder de la Reder de la desta de la deda de

Unit - VBIOREMEDIATION AND SOLID WASTE MANAGEMENT09 HrsBioremediation;In-situ and Ex-situ Bioremediation of contaminated soils and waste land;Microbiology of degradation of Xenobiotics in environment;Pesticides, Surfactants, Microplastics,Degradative plasmids.Solid waste: Composting, Vermiculture and methane production - UASBR.

References

- 1. Gareth M. Evans, Gareth G. Evans, Judy Furlong 2011
- 2. Environmental biotechnology: theory and application John Wiley & Sons, Ltd. West Sussex, UK
- 3. M. Moo-Young, W.A. Anderson, A.M. Chakrabarty, 2010. Environmental Biotechnology: Principles and Applications. Springer.
- 4. M. H. Fulekar, 2010 Environmental Biotechnology, by Science Publishers Department of Life Sciences, University of Mumbai, India,
- 5. Stanley E. Manahan, 2009. Environmental Chemistry, Ninth Edition, CRC Press.
- 6. Environmental chemistry 5th edition by A.K.De. 1997.
- 7. Bruce E. Rittmann and Perry L. McCarty. 2001. Environmental Biotechnology :Principles and applications. McGraw Hill, Newyork.
- 8. Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001.Industrial and Environmental Biotechnology. Horizon Press.

Year	Ι	Program	M.Sc., Biotechnology	Code	24	P2BTSP02	
Sem	Π			Credits	Credits		
Hrs	20	Soft ski	II – II: LAB IN PYTHON & LINUX	Effect from	Effect from		
Course	e Objec	tives:					
	•		s course are:				
			ng and Scripting in Python: Develop skill	ls in reading,	writir	g, creating,	
		U ,	manipulating data using Python scripts.	aant Drithan	anint	for DNA	
		-	ioinformatics Analysis: Learn to implen including counting nucleotides, determi	-	-		
	-	ng restriction		ining molecu	iai v	Cigint, and	
	•	0	x Commands for File and System Mana	gement: Gain	fami	liarity with	
e	ssential	Linux comm	hands for efficient file handling, navigation	on, and system	n mar	agement to	
S	upport b	pioinformatic	s workflows.				
	e Outco						
On the			ion of the course, student will be able to:				
CO1			ize Python file handling operations for reading files in bioinformatics applications.	ling, writing,		K1, K2	
CO2	Impler multip		mathematical operations (addition, sion) using Python to solve biological data p	subtraction, problems.		K2, K3	
CO3	-		uences using Python scripts to count nuc dict AT/GC content.	leotide	K2	,K3 & K4	
CO4			scribe DNA sequences into RNA and pr oinformatics functions for molecular studie	_	K3	,K4 & K5	
CO4		-	etency in essential Linux commands to n em navigation for efficient bioinformatics p	-	K4	, K5 & K6	
K1 - R	ememb	er; K2 - Uno	lerstand; K3 - Apply; K4 - Analyze; K5 -	Evaluate; K6	6 - Cr	eate	
S.No			Experiments			Hours	
1	Python	File Handlir	ng – Read, Write / Create, Delete Files			2	
2	Python	script to add	two numbers (Addition, subtract, Multiplic	cation & Divis	ion)	2	
3	Count	the number of	f nucleotides in a DNA sequence.			2	
4	Count	the number of	f nucleotides in a DNA sequence using file	handles.		2	
5	Python	script for de	termining the Molecular weight.			2	
6	-		edictiong of AT/GC content.			2	
7	Python	script for ide	entifying the restriction site.			2	

8	Python script for transcripting the DNA sequence.	2				
9	Python script for translating the DNA sequence.	2				
10	Basic Linux Commands – Is, pwd, mkdir, cd, rmdir, cp, mv, rm, touch etc.	2				
References						

- 1. Jones, Martin. Python for Biologists: A Complete Guide to Python for Biological Research. 2nd Edition, 2017.
- 2. Model, Mitchell L. Bioinformatics Programming Using Python: Practical Programming for Biological Data. 1st Edition, 2009.
- 3. Lutz, Mark. Learning Python. 5th Edition, 2013.
- 4. Blum, Richard, and Christine Bresnahan. Linux Command Line and Shell Scripting Bible. 4th Edition, 2015.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

.

DEPARTMENT OF BIOTECHNOLOGY

M.Sc., Biotechnology Curriculum

(Autonomous, CBCS & OBE pattern)

(For the Candidates admitted during the academic year 2023-2024 onwards)

S.No	Course		Course Code	de Course	Credits	Hours		Maximum Marks				
5.110	Component		Course Coue	Course	Cre	Т	Р	Int	Ext	Total		
				SEMESTER - IV								
1	Core – 10)	23P4BTC010	Research Methodology	5	6		25	75	100		
2	Elective –5		Elective –5		23P4BTDE10	Stem Cell Biology	3	3		25	75	100
3	EDC		23P4BTED01	Bioinformatics - EDC	2	2		25	75	100		
4	Soft Skill -IV		23P4BTSP04	Lab in AI	2		2	40	60	100		
5	Dissertation		23P4BTPR01	Project Viva Voce	5		17	40	60	100		
			Total		17	11	19	155	345	500		
Theor	y 03	3										
Practi	cal 01	-										
Projec	ct 01											

SCHEME OF EXAMINATION

	1	т т			
Year	II	Program	M.Sc., Biotechnology	Code	23P4BTC010
Sem	IV	Coro	10 : RESEARCH METHODOLOGY	Credits	05
Hrs	75	Core-	IV. KESEAKCH METHODOLOGI	Effect from	2023-2024
	e Objec				
	•		s course are:		
-			gh knowledge on the basics of academic res		dent will get to
			s of methodologies & ethics to pursue resear	ch.	
	e Outco				
On the	e succes	sful complet	ion of the course, student will be able to:		
CO1	Under	stand the base	es for research		K1
CO2	To kn	ow about rese	arch proposal and dissertation writing.		K2 &K6
CO3	To kn	ow about Stat	istical application in research		K3
CO4	To kn	ow about office	ce tools used in research		K1 & K4
CO5	To kn	ow about sear	ch engines.		K1 & K2
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; K3	5 - Evaluate; I	K6 - Create
Unit –	Ι	Research Me	ethodology - An Introduction		15 Hrs
Resear	ch Met	hodology - A	an Introduction: Meaning of Research, Obje	ectives of Rese	earch, Types of
Resear	ch, Res	earch Approa	aches, Importance of knowing how researc	h is done, Re	search Process,
Criteria	a of go	od research.	Defining the Research Problem; Research	h Design; Sar	npling Design;
	-		; Processing and Analysis of Data; Sampling	-	
Unit –			iterature, Writing the Research Report		15 Hrs
			ng the Research Report (Thesis and publication	· _	ents of research
-			dresses, Abstract, Keywords, Introduction, M	faterials and M	
Discus			nowledgements and Bibliography.		lethods, Results,
	Unit – III Statistical Tools and Analysis				
			ools and Analysis		15 Hrs
		ation- T test.	ools and Analysis Analysis of Variance components (ANOVA)		15 Hrs et model; Total,
treatme	ent and	ation- T test. error of squar	ools and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor	n effects mode	15 Hrs ct model; Total, l, Estimation of
treatme varianc	ent and ce comp	ation- T test. error of squar oonents, Mod	ools and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial	n effects mode Design, Basic	15 Hrs et model; Total, l, Estimation of definitions and
treatme varianc princip	ent and ce comp bles, ma	ation- T test. error of squar oonents, Mod in effect and	ools and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor	n effects mode Design, Basic	15 Hrs et model; Total, l, Estimation of definitions and
treatme varianc princip two fac	ent and ce comp bles, ma ctor fact	ation- T test. error of squar oonents, Mod in effect and corial design.	ools and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plo	n effects mode Design, Basic	15 Hrs ct model; Total, l, Estimation of definitions and rangement for a
treatme variance princip two face Unit -2	ent and ce comp bles, ma ctor fact IV	ation- T test. error of squar oonents, Mod in effect and corial design. Spreadsheet	ools and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plo and Presentation Tools	n effects mode Design, Basic ots, General arr	15 Hrs et model; Total, l, Estimation of definitions and rangement for a 15 Hrs
treatme variance princip two fac Unit -2 Spread	ent and ce comp bles, ma ctor fact IV sheet T	ation- T test. error of squar oonents, Mod in effect and corial design. Spreadsheet ool: Introduct	ools and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plot and Presentation Tools tion to spreadsheet application, features and for	n effects mode Design, Basic ots, General arr functions, Usin	15 Hrs ct model; Total, l, Estimation of definitions and angement for a 15 Hrs g formulas and
treatme varianc princip two fac Unit - 2 Spread functio	ent and ce comp bles, ma ctor fact IV sheet T ons, Dat	ation- T test. error of squar oonents, Mod in effect and corial design. Spreadsheet ool: Introduct a storing, Fe	Dols and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plot and Presentation Tools tion to spreadsheet application, features and features for Statistical data analysis, General	n effects mode Design, Basic ots, General arr functions, Usin ating charts/ g	15 Hrs ct model; Total, l, Estimation of definitions and angement for a 15 Hrs g formulas and raph and other
treatme variance princip two fac Unit -2 Spread functio feature	ent and ce comp oles, ma ctor fact IV sheet T ons, Dat es. Pres	ation- T test. error of squar oonents, Mod in effect and corial design. Spreadsheet ool: Introduct ta storing, Fe entation Too	bols and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plot and Presentation Tools tion to spreadsheet application, features and teatures for Statistical data analysis, Generation el: Introduction to presentation tool, features	n effects mode Design, Basic ots, General arr functions, Usin ating charts/ g ures and func	15 Hrs ct model; Total, l, Estimation of definitions and angement for a 15 Hrs g formulas and raph and other tions, Creating
treatme variance princip two face Unit - 2 Spread functio feature present	ent and ce comp ples, ma ctor fact IV sheet T ons, Dat es. Pres tation, (ation- T test. error of squar oonents, Mod in effect and corial design. Spreadsheet ool: Introduct ca storing, Fe entation Too Customizing	Dols and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plot and Presentation Tools tion to spreadsheet application, features and teatures for Statistical data analysis, Genera ol: Introduction to presentation tool, feature presentation, Showing presentation. Tools upper sentation.	n effects mode Design, Basic ots, General arr functions, Usin ating charts/ g ures and func	15 Hrs ct model; Total, l, Estimation of definitions and angement for a 15 Hrs g formulas and raph and other tions, Creating
treatme variance princip two face Unit - 2 Spread functio feature present	ent and ce comp ples, ma ctor fact IV sheet T ons, Dat es. Pres tation, (ation- T test. error of squar oonents, Mod in effect and corial design. Spreadsheet ool: Introduct ta storing, Fe entation Too	Dols and Analysis Analysis of Variance components (ANOVA) res, Degrees of freedom, ANOVA for randor el adequacy checking. Two factor Factorial interaction, response surface and contour plot and Presentation Tools tion to spreadsheet application, features and teatures for Statistical data analysis, Genera ol: Introduction to presentation tool, feature presentation, Showing presentation. Tools upper sentation.	n effects mode Design, Basic ots, General arr functions, Usin ating charts/ g ures and func	15 Hrs ct model; Total, l, Estimation of definitions and angement for a 15 Hrs g formulas and raph and other tions, Creating

Web Search: Introduction to Internet, Use of Internet and WWW, Using search engine like Google, Yahoo, Pubmed, Science direct, Scopus etc, and Using advanced search techniques

References

- 1. Kothari, C.R. (2019). Research Methodology: Methods and Techniques (4th Edition). New Age International.
- 2. Day, R.A. (2011). How to Write and Publish a Scientific Paper (7th Edition). Cambridge University Press.
- 3. Montgomery, D.C. (2017). Design and Analysis of Experiments (9th Edition). Wiley.
- 4. Excel 2019 Bible by John Walkenbach, Michael Alexander, and Richard Kusleika (Wiley).
- 5. Koller, D., & Tucker, A. (2015). Practical Google Analytics and Google Tag Manager for Developers (1st Edition). Apress.

	r			1	,
Year	II	Program	M.Sc., Biotechnology	Code Credits	23P4BTDE10
Sem	IV		03		
Hrs	45		Elective – 5 : STEM CELL BIOLOGY Effect from		2023-2024
	v	ectives:			
		ojectives of thi			
			owledge on the fundamentals of stem celledge and understanding about the application		
Course	e Out	comes:			
On the	e succ	essful complet	ion of the course, student will be able to:		
CO1	To u	nderstand the 1	najor discoveries of stem cell biology		K1
CO2	To p	rovide basic kr	nowledge about stem cell niche and functions		K1 & K2
CO3	To en	nlighten the stu	idents on Stem cell isolation and culture techn	niques	K3, K4
CO4	CO4 To update the knowledge on Stem cell cycle				
CO5	To as	ssess and appra	aise Applications of Embryonic stem cells.		K3,K4 & K5
K1	- Ren	nember; K2 -	Understand; K3 - Apply; K4 - Analyze; K	5 - Evaluate;	K6 - Create
Unit –	Ι	Introduction	to Stem cells		9 Hrs
Stem c	cells -	Definition, C	haracterization, Pluripotency, Self-renewal	and differenti	ation. Types of
stem co	ells- E	mbryonic stem	a cells, Adult stem cells and mesenchymal ste	m Cells, Adipo	ose stem cells.
Unit –	II	Stem Cell Cu	lture and Techniques		9 Hrs
Stem immun	cell ohisto	,	aintenance, and culture conditions. Te I cell sorting Stem cell differentiation and line	1	ow cytometry,
Unit –	III	Therapeutic .	Applications of Stem Cells		9 Hrs
			nerative medicine: tissue engineering, orga		
			sues in stem cell therapy. Disease modeling a	ind drug disco	
			maling Pathways		9 Hrs
	•		modification and transcriptional regulation,		
			JAK -STAT pathway, Ras\Raf pathway, P y in cell cycle control.	13K cell signa	ling, p53 check
-		-	• •		0.17
Unit –			of Stem Cell Research	inose derived	9 Hrs
		•	c stem cells, Bone marrow stem cells, Ad Ethics in human stem cell research.	ipose derived	stem cens and
itemat	-1-2101				

Department of Biotechnology | VICAS | Autonomous

References

- 1. Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring Harbour Laboratory Press
- 2. Stem cell biology and gene therapy, Booth C., Cell Biology International, Academic Press
- 3. Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, Jonathan Leo, Springer, STEM CELL TECHNOLOGY Syllabus Semester First References:
- 4. Stem Cell Biology and Gene Therapy. Quesenberry PJ, Stein GS, eds. (£65.00.) Wiley, 1998.
- 5. Progress in gene therapy, Volume 2,Pioneering stem cell/gene therapy trials, Roger Bertolotti, Keiya Ozawa and H. Kirk Hammond, VSP international science publishers
- 6. Stem Cells Handbook: Stewart Sell, Humana Press; Totowa NJ, USA; Oct. 2003,
- 7. Human Embryonic Stem Cells: The Practical Handbook by Stephen Sullivan and Chad A Cowan

Sem IV Soft Skill – IV : Lab in AI - Based Biotechnology Credits 2 Hrs 30 Soft Skill – IV : Lab in AI - Based Biotechnology Effect from 2023-2024 Course Objectives: The main objectives of this course are: 1. Introduce students to AI-driven tools and platforms used for gene expression analysis, protein structure prediction, microbiome data analysis, and promoter-enhancer prediction in genomes. 2. Equip students with the ability to apply AI techniques to analyze single-cell data, predict gene regulatory networks, and classify complex biological datasets. 3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: K1 CO2 Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. K3 CO4 Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy. K4	Year	II	Program	M.Sc., Biotechnology	Code	23P4BTSP04
Hrs 30 Effect from 2023-2024 Course Objectives: The main objectives of this course are: . <td< th=""><th></th><th></th><th>Tigrum</th><th>Misc., Dietermology</th><th></th><th></th></td<>			Tigrum	Misc., Dietermology		
Course Objectives: Image: Course Objectives: The main objectives of this course are: Image: Course Objectives: Image: Introduce students to Al-driven tools and platforms used for gene expression analysis, protein structure prediction, microbiome data analysis, and promoter-enhancer prediction in genomes. 2. Equip students with the ability to apply AI techniques to analyze single-cell data, predict gene regulatory networks, and classify complex biological datasets. 3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: On the successful completion of the course, student will be able to: On the successful completion of the course, student will be able to: CO2 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. CO4 Ferform single-cell data analysis to classify cell types and states using AI-based methodologies, integrating omics data and clinical information. K5 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create S.No Experiments 1 Al Tools and Platforms for Biotechnology	Ung	30	Soft Skill -	- IV: Lab in AI - Based Biotechnology	Effect from	2022 2024
The main objectives of this course are: 1. Introduce students to Al-driven tools and platforms used for gene expression analysis, protein structure prediction, microbiome data analysis, and promoter-enhancer prediction in genomes. 2. Equip students with the ability to apply AI techniques to analyze single-cell data, predict gene regulatory networks, and classify complex biological datasets. 3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. CO4 CO4 Analyze and classify cell spens and states using AI algorithms and platforms using AI algorithms and platforms such as Seurat or Scanpy. CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. CO			tives:			2023-2024
structure prediction, microbiome data analysis, and promoter-enhancer prediction in genomes. 2. Equip students with the ability to apply AI techniques to analyze single-cell data, predict gene regulatory networks, and classify complex biological datasets. 3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 Course Outcomes: Course Outcomes: Course Outcomes: On the successful completion of the course, student will be able to: Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 CO2 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. K2 CO3 Apply machine learning models to identify and predict gene regulatory networks such as Seurat or Scanpy. Co4 Perform single-cell data analysis to classify cell types and s		-		s course are:		
2. Equip students with the ability to apply AI techniques to analyze single-cell data, predict gene regulatory networks, and classify complex biological datasets. 3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: On the successful completion of the course, student will be able to: On the successful completion of the course, student will be able to: Course Outcomes: On the successful completion of the course, student will be able to: On the successful completion of the course, student will be able to: Course Outcomes: Out an algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. K2 CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. CO4 Perform single-cell data analysis to classify cell types and states using AI-frameworks such as Seurat or Scanpy. Cot besign workflows for diseas	1.			1 0	-	• • •
regulatory networks, and classify complex biological datasets. 3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. CO2 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. CO4 Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy. CO5 Design workflows for disease prediction and biomarker discovery using AI-based methodologies, integrating omics data and clinical information. K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create S.No Experiments Hours 1 AI Tools and Platforms for Biotechnology 3 2 Gene Expression Analysis and Classification 3 3 Protein Structure Prediction Using AI 4 AI Applications in Drug Discovery 3 5 Image-Based Biological Analysis Using AI 7 Predicting Gene Regulatory Networks 3 8 Promoter and Enhancer Prediction in Genomes 3 10 Biomarker Discovery and Disease Prediction 3	2					
3. Enable students to leverage AI for biomarker discovery, disease prediction, and drug discovery through case studies and practical exercises. Course Outcomes: On the successful completion of the course, student will be able to: Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 CO2 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. K2 CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. K3 CO4 Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy. K4 CO3 Design workflows for disease prediction and biomarker discovery using AI-based methodologies, integrating omics data and clinical information. K5 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create SNo Experiments 1 AI Tools and Platforms for Biotechnology 3 2 Gene Expression Analysis and Classification 3 3 Protein Structure Prediction Using AI 3 4 AI Applications					ze single-cen dat	a, predict gene
Course Outcomes: On the successful completion of the course, student will be able to: COI Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 CO2 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. K2 CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. K3 CO4 Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy. K4 CO5 Design workflows for disease prediction and biomarker discovery using AI-based methodologies, integrating omics data and clinical information. K5 K1 Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create S.No Experiments 1 AI Tools and Platforms for Biotechnology 3 3 2 Gene Expression Analysis and Classification 3 3 Protein Structure Prediction Using AI 3 4 AI Applications in Drug Discovery 3 5 Image-Based Biological Analysis 3 6 Microbiome Data Analysis Using AI 3 <					e prediction, and o	lrug discovery
On the successful completion of the course, student will be able to: K1 CO1 Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools. K1 CO2 Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding. K2 CO3 Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets. K3 CO4 Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy. K4 CO5 Design workflows for disease prediction and biomarker discovery using AI-based methodologies, integrating omics data and clinical information. K5 S.No Experiments Hours 1 AI Tools and Platforms for Biotechnology 3 2 Gene Expression Analysis and Classification 3 3 Protein Structure Prediction Using AI 3 4 AI Applications in Drug Discovery 3 5 Image-Based Biological Analysis 3 6 Microbiome Data Analysis Using AI 3 7 Predicting Gene Regulatory Networks 3 <		through	n case studies	and practical exercises.		
CO1Analyze and classify gene expression data using AI algorithms and platforms such as TensorFlow, PyTorch, or specific bioinformatics AI tools.K1CO2Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding.K2CO3Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets.K3CO4Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy.K4CO5Design workflows for disease prediction and biomarker discovery using AI- based methodologies, integrating omics data and clinical information.K5K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create S.NoHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI 434AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3						
CO1such as TensorFlow, PyTorch, or specific bioinformatics AI tools.K1CO2Predict protein structures using AI-based techniques like AlphaFold and interpret structural implications for drug design and disease understanding.K2CO3Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets.K3CO4Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy.K4CO5Design workflows for disease prediction and biomarker discovery using AI- based methodologies, integrating omics data and clinical information.K5K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateS.NoS.NoExperimentsHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	On the		•	·		
CO2interpret structural implications for drug design and disease understanding.K2CO3Apply machine learning models to identify and predict gene regulatory networks from experimental and simulated datasets.K3CO4Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy.K4CO5Design workflows for disease prediction and biomarker discovery using AI- based methodologies, integrating omics data and clinical information.K5Kt - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateHoursS.NoExperimentsHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	CO1	•			-	К1
CO3networks from experimental and simulated datasets.K3CO4Perform single-cell data analysis to classify cell types and states using AI frameworks such as Seurat or Scanpy.K4CO5Design workflows for disease prediction and biomarker discovery using AI- based methodologies, integrating omics data and clinical information.K5K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateHoursS.NoExperimentsHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	CO2					К2
CO4frameworks such as Seurat or Scanpy.K4CO5Design workflows for disease prediction and biomarker discovery using AI- based methodologies, integrating omics data and clinical information.K5K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateHoursS.NoExperimentsHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	CO3					К3
CO3based methodologies, integrating omics data and clinical information.K5K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - CreateS.NoExperimentsHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	CO4					K4
S.NoExperimentsHours1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	CO5					K5
1AI Tools and Platforms for Biotechnology32Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	K1	- Reme	ember; K2 -	Understand; K3 - Apply; K4 - Analyze; 1	K5 - Evaluate; K	6 - Create
2Gene Expression Analysis and Classification33Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	S.No			Experiments		Hours
3Protein Structure Prediction Using AI34AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	1	AI Too	ols and Platfo	rms for Biotechnology		3
4AI Applications in Drug Discovery35Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	2	Gene I	Expression A	nalysis and Classification		3
5Image-Based Biological Analysis36Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	3	Protein	n Structure Pr	rediction Using AI		3
6Microbiome Data Analysis Using AI37Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	4	AI Applications in Drug Discovery				3
7Predicting Gene Regulatory Networks38Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	5	Image-Based Biological Analysis				3
8Promoter and Enhancer Prediction in Genomes39Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	6	Microbiome Data Analysis Using AI				3
9Single-Cell Data Analysis and Classification310Biomarker Discovery and Disease Prediction3	7	Predicting Gene Regulatory Networks				3
10Biomarker Discovery and Disease Prediction3	8	Promoter and Enhancer Prediction in Genomes				3
	9	Single-Cell Data Analysis and Classification				3
References	10	Biomarker Discovery and Disease Prediction			3	
	Refere	nces				

- 1. Chicco, D., & Jurman, G. (2020). Machine Learning with Applications in Bioinformatics. Springer.
- 2. Greener, J. G., Kandathil, S. M., & Jones, D. T. (2021). Deep Learning for Protein Structure Prediction. Wiley.
- 3. Yip, S. H., & Sham, P. C. (2019). AI in Genomic Medicine. Cambridge University Press.
- 4. Raj, A., & van Oudenaarden, A. (2018). Single-Cell Data Analysis Using AI: A Practical Guide. Oxford University Press.
- 5. Topol, E. J. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books.

Year	Π	Program	B.Sc., Biotechnology	Code	23P4BTED01	
Sem	IV			Credits	2	
Hrs	45	EDC : Bioinformatics Effect from			2023-2024	
	e Objec	tives:			2025-2024	
	v		s course are:			
			in the concept of essential of bioinfor	matics.		
			of prediction tools that are used to pre-		vstem.	
3. To u	ındersta	nd basic cond	cepts of drug designing.			
Course	e Outco	omes:				
			ion of the course, student will be abl	le to:		
	Under	stand the stru	cture of various biological databases,	nucleic acid sequence	ce	
CO1	(GenB	(GenBank/NCBI, EMBL, DDBJ) and protein sequence databases (UniprotKB,				
	PIR).					
	Devel	op skills in s	equence alignment, including both pa	airwise sequence		
CO2			d global alignments) and multiple sequ		K2 & K3	
	Learn	to use gene	prediction methods (ORF Finder), and	nd RNA/protein	К3	
CO3	secondary structure prediction methods (GOR).					
	Under	Understand the principles of molecular mechanics, including force fields, bond				
CO4	length, torsion angle, non-bonded interactions (van der Waals interactions)					
~~~	Learn the concepts and techniques of drug designing, including computer-					
CO5	aided drug design, Ligand-based approaches, and target-based approaches.					
K1	- Rem	ember; K2 -	Understand; K3 - Apply; K4 - Analy	yze; K5 - Evaluate;	K6 - Create	
Unit –	II	Biological Da	tabases		<b>09 Hrs</b>	
			eic acid sequence databases– GenBan otKB and PIR, Structure databases – H			
Unit –	II S	Sequences Ai	nalysis		09 Hrs	
Sequer	nce alig	nment, Pairv	vise Sequence Alignment- Local a	alignment and Glo	bal alignments,	
Dynam	nic prog	ramming algo	orithm, Scoring matrices, gap penalties	8.		
Unit –			milarity and Analysis Tools		<b>09 Hrs</b>	
-	-	-	nent, Phylogenetic Analysis- tree			
	ood and	i maximum	parsimony- distance methods. Databa	ase similarity search	n - BLAST and	
types.		<b>D</b> 11 /1			00 TT	
Unit-		ene Prediction methods	on Methods ORF Finder, Protein Secondary Stru	ucture Methods CO	09 Hrs R IV Molecular	
			Bond length, Torsion angle, and van d			
	handrai		vone tengen, reteren ungle, und van e	in multiplice	is and anaryzing	
Unit –	1	rug Designir	a		09 Hrs	
omt –	v D	rug Designin	'S		<b>V/ 111</b> 3	

Department of Biotechnology | VICAS | Autonomous

Drug Discovery. History. Steps in drug discovery. Target Identification. Target Validation. ADME. Drug designing - Computer aided drug design. Ligand based approach. Target based approach.

#### References

- 1. "Bioinformatics: Sequence and Genome Analysis" by David W. Mount, 2nd Edition (2004)
- 2. "Bioinformatics: Principles and Applications" by Zhumur Ghosh and Bibekanand Mallick, 1st Edition (2008).
- 3. "Bioinformatics: Sequence and Genome Analysis" by David W. Mount, 2nd Edition (2004).
- 4. "Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins" by Andreas D. Baxevanis and B. F. Francis Ouellette, 3rd Edition (2004).
- 5. "Molecular Modelling: Principles and Applications" by Andrew R. Leach, 2nd Edition (2001).
- 6. "Drug Design: Methodology, Concepts, and Mode-of-Action" by Thierry Langer and Rolf W. Hartmann, 1st Edition (2006).
- 7. "The Organic Chemistry of Drug Design and Drug Action" by Richard B. Silverman and Mark W. Holladay, 3rd Edition (2014).